Systematic variational method for statistical nonlinear state and parameter estimation

被引:24
|
作者
Ye, Jingxin [1 ]
Rey, Daniel [1 ]
Kadakia, Nirag [1 ]
Eldridge, Michael [1 ]
Morone, Uriel I. [1 ]
Rozdeba, Paul [1 ]
Abarbanel, Henry D. I. [1 ,2 ]
Quinn, John C. [3 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 92093 USA
[3] Intellisis Corp, San Diego, CA 92121 USA
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 05期
关键词
DATA ASSIMILATION; ALGORITHM;
D O I
10.1103/PhysRevE.92.052901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In statistical data assimilation one evaluates the conditional expected values, conditioned on measurements, of interesting quantities on the path of a model through observation and prediction windows. This often requires working with very high dimensional integrals in the discrete time descriptions of the observations and model dynamics, which become functional integrals in the continuous-time limit. Two familiar methods for performing these integrals include (1) Monte Carlo calculations and (2) variational approximations using the method of Laplace plus perturbative corrections to the dominant contributions. We attend here to aspects of the Laplace approximation and develop an annealing method for locating the variational path satisfying the Euler-Lagrange equations that comprises the major contribution to the integrals. This begins with the identification of the minimum action path starting with a situation where the model dynamics is totally unresolved in state space, and the consistent minimum of the variational problem is known. We then proceed to slowly increase the model resolution, seeking to remain in the basin of the minimum action path, until a path that gives the dominant contribution to the integral is identified. After a discussion of some general issues, we give examples of the assimilation process for some simple, instructive models from the geophysical literature. Then we explore a slightly richer model of the same type with two distinct time scales. This is followed by a model characterizing the biophysics of individual neurons.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Nonlinear state estimation and parameter identification in biological wastewater treatment
    Bavdaž, G.
    Hvala, N.
    Kocijan, J.
    Juričič, D.
    Elektrotehniski Vestnik/Electrotechnical Review, 2001, 68 (01): : 57 - 63
  • [42] Online State and Parameter Estimation of a Nonlinear Gear Transmission System
    Giagopoulos, Dimitrios
    Dertimanis, Vasilis
    Chatzi, Eleni
    Spiridonakos, Minas
    NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 355 - 364
  • [43] A study on the state and parameter cooperative estimation of nonlinear mechanical systems
    Pak, Jong Hyok
    Choi, Kwang Chol
    Han, Dae Ho
    ASIAN JOURNAL OF CONTROL, 2022, 24 (04) : 1942 - 1953
  • [44] Nonlinear state and parameter estimation in batch biological wastewater treatment
    Hvala, N
    Bavdaz, G
    Kocijan, J
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2001, 32 (02) : 145 - 156
  • [45] Multi-rate nonlinear state and parameter estimation in a bioreactor
    Tatiraju, S
    Soroush, M
    Mutharasan, R
    BIOTECHNOLOGY AND BIOENGINEERING, 1999, 63 (01) : 22 - 32
  • [46] PARAMETER AND STATE ESTIMATION OF KINETIC AND NONLINEAR DYNAMIC-SYSTEMS
    OKADA, T
    COMPUTERS & CHEMISTRY, 1984, 8 (01): : 29 - 37
  • [47] State and parameter estimation in nonlinear systems as an optimal tracking problem
    Creveling, Daniel R.
    Gill, Philip E.
    Abarbanel, Henry D. I.
    PHYSICS LETTERS A, 2008, 372 (15) : 2640 - 2644
  • [48] Interval analysis for nonlinear parameter and state estimation: Contributions and limitations
    Kieffer, M
    Walter, E
    Braems, I
    Jaulin, L
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 577 - 582
  • [49] Accurate state and parameter estimation in nonlinear systems with sparse observations
    Rey, Daniel
    Eldridge, Michael
    Kostuk, Mark
    Abarbanel, Henry D. I.
    Schumann-Bischoff, Jan
    Parlitz, Ulrich
    PHYSICS LETTERS A, 2014, 378 (11-12) : 869 - 873
  • [50] Parameter estimation in a class of nonlinear state-space models
    Enescu, Mihai
    Koivunen, Visa
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 193 - 196