Penalized angular regression for personalized predictions

被引:0
|
作者
Hellton, Kristoffer H. [1 ,2 ]
机构
[1] Norwegian Comp Ctr, Oslo, Norway
[2] Univ Oslo, Dept Math, Oslo, Norway
关键词
angular estimation; cosine similarity; hyperspherical coordinates; penalized regression; personalization; personalized predictions; SELECTION; DISTRIBUTIONS;
D O I
10.1111/sjos.12574
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The method therefore penalizes the normalized regression coefficients, or the angles of the regression coefficients in a hyperspherical parametrization, introducing a new angle-based class of penalties. PAN hence combines two novel concepts: penalizing the normalized coefficients and personalization. For an orthogonal design matrix, we show that the PAN estimator is the solution to a low-dimensional eigenvector equation. Based on the hyperspherical parametrization, we construct an efficient algorithm to calculate the PAN estimator. We propose a parametric bootstrap procedure for selecting the tuning parameter, and simulations show that PAN regression can outperform ordinary least squares, ridge regression and other penalized regression methods in terms of prediction error. Finally, we demonstrate the method in a medical application.
引用
收藏
页码:184 / 212
页数:29
相关论文
共 50 条
  • [1] Penalized expectile regression: an alternative to penalized quantile regression
    Lina Liao
    Cheolwoo Park
    Hosik Choi
    [J]. Annals of the Institute of Statistical Mathematics, 2019, 71 : 409 - 438
  • [2] Penalized expectile regression: an alternative to penalized quantile regression
    Liao, Lina
    Park, Cheolwoo
    Choi, Hosik
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (02) : 409 - 438
  • [3] Fridge: Focused fine-tuning of ridge regression for personalized predictions
    Hellton, Kristoffer H.
    Hjort, Nils Lid
    [J]. STATISTICS IN MEDICINE, 2018, 37 (08) : 1290 - 1303
  • [4] Penalized isotonic regression
    Wu, Jiwen
    Meyer, Mary C.
    Opsomer, Jean D.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 161 : 12 - 24
  • [5] Penalized polygram regression
    Jae-Hwan Jhong
    Kwan-Young Bak
    Ja-Yong Koo
    [J]. Journal of the Korean Statistical Society, 2022, 51 : 1161 - 1192
  • [6] Penalized Functional Regression
    Goldsmith, Jeff
    Bobb, Jennifer
    Crainiceanu, Ciprian M.
    Caffo, Brian
    Reich, Daniel
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (04) : 830 - 851
  • [7] Penalized polygram regression
    Jhong, Jae-Hwan
    Bak, Kwan-Young
    Koo, Ja-Yong
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (04) : 1161 - 1192
  • [8] Enhanced Model Predictions through Principal Components and Average Least Squares-Centered Penalized Regression
    Lukman, Adewale F.
    Adewuyi, Emmanuel T.
    Alqasem, Ohud A.
    Arashi, Mohammad
    Ayinde, Kayode
    [J]. SYMMETRY-BASEL, 2024, 16 (04):
  • [9] Penalized Euclidean distance regression
    Vasiliu, Daniel
    Dey, Tanujit
    Dryden, Ian L.
    [J]. STAT, 2018, 7 (01):
  • [10] BIVARIATE PENALIZED SPLINES FOR REGRESSION
    Lai, Ming-Jun
    Wang, Li
    [J]. STATISTICA SINICA, 2013, 23 (03) : 1399 - 1417