BIVARIATE PENALIZED SPLINES FOR REGRESSION

被引:39
|
作者
Lai, Ming-Jun [1 ]
Wang, Li [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
Asymptotic normality; least squares; penalty; spline; triangulation; LOCAL ASYMPTOTICS; SPHERICAL SPLINES; CONVERGENCE;
D O I
10.5705/ss.2010.278
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the asymptotic behavior of penalized spline estimators is studied using bivariate splines over triangulations and an energy functional as the penalty. A convergence rate for the penalized spline estimators is derived that achieves the optimal nonparametric convergence rate established by Stone (1982). The asymptotic normality of the proposed estimators is established and shown to hold uniformly over the points where the regression function is estimated. The size of the asymptotic conditional variance is evaluated, and a simple expression for the asymptotic variance is given. Simulation experiments have provided strong evidence that corroborates the asymptotic theory. A comparison with thin-plate splines is provided to illustrate some advantages of this spline smoothing approach.
引用
收藏
页码:1399 / 1417
页数:19
相关论文
共 50 条
  • [1] Bivariate regression splines
    Chen, LA
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1996, 21 (04) : 399 - 418
  • [2] S-Estimation for Penalized Regression Splines
    Tharmaratnam, Kukatharmini
    Claeskens, Gerda
    Croux, Christophe
    Saubian-Barrera, Matias
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (03) : 609 - 625
  • [3] Smoothness Selection for Penalized Quantile Regression Splines
    Reiss, Philip T.
    Huang, Lei
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2012, 8 (01):
  • [4] On semiparametric regression with O'Sullivan penalized splines
    Wand, M. P.
    Ormerod, J. T.
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2008, 50 (02) : 179 - 198
  • [5] Spatially adaptive Bayesian penalized regression splines (P-splines)
    Baladandayuthapani, V
    Mallick, BK
    Carroll, RJ
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (02) : 378 - 394
  • [6] Bivariate splines for spatial functional regression models
    Guillas, Serge
    Lai, Ming-Jun
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (04) : 477 - 497
  • [7] Marginal longitudinal semiparametric regression via penalized splines
    Al Kadiri, M.
    Carroll, R. J.
    Wand, M. P.
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (15-16) : 1242 - 1252
  • [8] Semiparametric regression with shape-constrained penalized splines
    Hazelton, Martin L.
    Turlach, Berwin A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (10) : 2871 - 2879
  • [9] Convex Regression via Penalized Splines: A Complementarity Approach
    Shen, Jinglai
    Wang, Xiao
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 332 - 337
  • [10] A NOTE ON A NONPARAMETRIC REGRESSION TEST THROUGH PENALIZED SPLINES
    Chen, Huaihou
    Wang, Yuanjia
    Li, Runze
    Shear, Katherine
    [J]. STATISTICA SINICA, 2014, 24 (03) : 1143 - 1160