BIVARIATE PENALIZED SPLINES FOR REGRESSION

被引:47
|
作者
Lai, Ming-Jun [1 ]
Wang, Li [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
Asymptotic normality; least squares; penalty; spline; triangulation; LOCAL ASYMPTOTICS; SPHERICAL SPLINES; CONVERGENCE;
D O I
10.5705/ss.2010.278
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the asymptotic behavior of penalized spline estimators is studied using bivariate splines over triangulations and an energy functional as the penalty. A convergence rate for the penalized spline estimators is derived that achieves the optimal nonparametric convergence rate established by Stone (1982). The asymptotic normality of the proposed estimators is established and shown to hold uniformly over the points where the regression function is estimated. The size of the asymptotic conditional variance is evaluated, and a simple expression for the asymptotic variance is given. Simulation experiments have provided strong evidence that corroborates the asymptotic theory. A comparison with thin-plate splines is provided to illustrate some advantages of this spline smoothing approach.
引用
收藏
页码:1399 / 1417
页数:19
相关论文
共 50 条
  • [21] Constrained penalized splines
    Meyer, Mary C.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2012, 40 (01): : 190 - 206
  • [22] Flexible pair-copula estimation in D-vines using bivariate penalized splines
    Kauermann, Goeran
    Schellhase, Christian
    STATISTICS AND COMPUTING, 2014, 24 (06) : 1081 - 1100
  • [23] Flexible pair-copula estimation in D-vines using bivariate penalized splines
    Göran Kauermann
    Christian Schellhase
    Statistics and Computing, 2014, 24 : 1081 - 1100
  • [24] Calibrating remotely sensed chlorophyll-a data by using penalized regression splines
    Clarke, E. D.
    Speirs, D. C.
    Heath, M. R.
    Wood, S. N.
    Gurney, W. S. C.
    Holmes, S. J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2006, 55 : 331 - 353
  • [25] A New Robust Algorithm for Penalized Regression Splines Based on Mode-Estimation
    Eldeeb, Ahmed
    Desoky, Sabreen
    Ahmed, Mohamed
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (01): : 1037 - 1055
  • [26] Spatially adaptive Bayesian penalized regression splines (P-splines) (vol 14, pg 378, 2005)
    Baladandayuthapani, V
    Mallick, B. K.
    Carroll, R. J.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (02) : 515 - 515
  • [27] Exploring US Business Cycles with Bivariate Loops Using Penalized Spline Regression
    Göran Kauermann
    Timo Teuber
    Peter Flaschel
    Computational Economics, 2012, 39 : 409 - 427
  • [28] Exploring US Business Cycles with Bivariate Loops Using Penalized Spline Regression
    Kauermann, Goeran
    Teuber, Timo
    Flaschel, Peter
    COMPUTATIONAL ECONOMICS, 2012, 39 (04) : 409 - 427
  • [29] EFFICIENT ESTIMATION OF PARTIALLY LINEAR MODELS FOR DATA ON COMPLICATED DOMAINS BY BIVARIATE PENALIZED SPLINES OVER TRIANGULATIONS
    Wang, Li
    Wang, Guannan
    Lai, Ming-Jun
    Gao, Lei
    STATISTICA SINICA, 2020, 30 (01) : 347 - 369
  • [30] Bivariate semialgebraic splines
    DiPasquale, Michael
    Sottile, Frank
    JOURNAL OF APPROXIMATION THEORY, 2020, 254