Bivariate regression splines

被引:2
|
作者
Chen, LA [1 ]
机构
[1] NATL CHIAO TUNG UNIV,INST STAT,HSINCHU 30050,TAIWAN
关键词
bivariate regression spline; hyperplane; linear restriction; piecewise polynomial;
D O I
10.1016/0167-9473(94)00026-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Towards the construction of multivariate spline functions, we introduce a way to set linear restrictions in the generation of bivariate regression splines. The hyperplanes in R(2) are used in the role of ''knot'' to slice the domain of explanatory variables; hence, we have the flexibility in domain partition which includes rectangle, parallelogram, trapezoid and trapezium.
引用
收藏
页码:399 / 418
页数:20
相关论文
共 50 条
  • [1] BIVARIATE PENALIZED SPLINES FOR REGRESSION
    Lai, Ming-Jun
    Wang, Li
    [J]. STATISTICA SINICA, 2013, 23 (03) : 1399 - 1417
  • [2] Bivariate splines for spatial functional regression models
    Guillas, Serge
    Lai, Ming-Jun
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (04) : 477 - 497
  • [3] Bivariate semialgebraic splines
    DiPasquale, Michael
    Sottile, Frank
    [J]. JOURNAL OF APPROXIMATION THEORY, 2020, 254
  • [4] Bivariate splines for fluid flows
    Lai, MJ
    Wenston, P
    [J]. COMPUTERS & FLUIDS, 2004, 33 (08) : 1047 - 1073
  • [5] Asymptotics of bivariate penalised splines
    Xiao, Luo
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2019, 31 (02) : 289 - 314
  • [6] Bivariate segment approximation and splines
    Meinardus, G
    Nurnberger, G
    Walz, G
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (01) : 25 - 45
  • [7] ON BIVARIATE SUPER VERTEX SPLINES
    CHUI, CK
    LAI, M
    [J]. CONSTRUCTIVE APPROXIMATION, 1990, 6 (04) : 399 - 419
  • [8] A Parallel Approach to Bivariate Splines
    P.Lamberti (Dept. of Math.
    [J]. Journal of Mathematical Research with Applications, 1997, (03) : 44 - 53
  • [9] On the approximation power of bivariate splines
    Ming-Jun Lai
    Larry L. Schumaker
    [J]. Advances in Computational Mathematics, 1998, 9 : 251 - 279
  • [10] Bivariate free knot splines
    Schütze, T
    Schwetlick, H
    [J]. BIT, 2003, 43 (01): : 153 - 178