Bivariate regression splines

被引:2
|
作者
Chen, LA [1 ]
机构
[1] NATL CHIAO TUNG UNIV,INST STAT,HSINCHU 30050,TAIWAN
关键词
bivariate regression spline; hyperplane; linear restriction; piecewise polynomial;
D O I
10.1016/0167-9473(94)00026-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Towards the construction of multivariate spline functions, we introduce a way to set linear restrictions in the generation of bivariate regression splines. The hyperplanes in R(2) are used in the role of ''knot'' to slice the domain of explanatory variables; hence, we have the flexibility in domain partition which includes rectangle, parallelogram, trapezoid and trapezium.
引用
收藏
页码:399 / 418
页数:20
相关论文
共 50 条
  • [41] Splines for Diffeomorphic Image Regression
    Singh, Nikhil
    Niethammer, Marc
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT II, 2014, 8674 : 121 - 129
  • [42] CONVERGENCE OF SPLINES AS REGRESSION ESTIMATORS
    QUIDEL, P
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (14): : 647 - 649
  • [43] MULTIVARIATE ADAPTIVE REGRESSION SPLINES
    FRIEDMAN, JH
    [J]. ANNALS OF STATISTICS, 1991, 19 (01): : 1 - 67
  • [44] Cardinal Splines in Nonparametric Regression
    Cho, J.
    Levit, B.
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2008, 17 (01) : 19 - 34
  • [45] Locally adaptive regression splines
    Mammen, E
    van de Geer, S
    [J]. ANNALS OF STATISTICS, 1997, 25 (01): : 387 - 413
  • [46] Local Lagrange interpolation with bivariate splines of arbitrary smoothness
    Nürnberger, G
    Rayevskaya, V
    Schumaker, LL
    Zeilfelder, F
    [J]. CONSTRUCTIVE APPROXIMATION, 2006, 23 (01) : 33 - 59
  • [47] A Numerical Algorithm for Cubature by Bivariate Splines on Nonuniform Partitions
    Giovanna Pittaluga
    Laura Sacripante
    [J]. Numerical Algorithms, 2001, 28 : 273 - 284
  • [48] Scattered Noisy Data Fitting Using Bivariate Splines
    Zhou, Tianhe
    Li, Zhong
    [J]. CEIS 2011, 2011, 15
  • [49] Bivariate Splines and Golden Section Based on Theory of Elasticity
    Ren Hong WANG1
    2.School of Sciences
    [J]. Journal of Mathematical Research with Applications, 2011, (01) : 1 - 11
  • [50] Error bounds for minimal energy bivariate polynomial splines
    von Golitschek, M
    Lai, MJ
    Schumaker, LL
    [J]. NUMERISCHE MATHEMATIK, 2002, 93 (02) : 315 - 331