Locally adaptive regression splines

被引:4
|
作者
Mammen, E
van de Geer, S
机构
[1] Univ Heidelberg, Inst Angew Math, D-69120 Heidelberg, Germany
[2] Rijksuniv Leiden, Fac Wiskunde & Nat Wetenschappen, NL-2300 RA Leiden, Netherlands
来源
ANNALS OF STATISTICS | 1997年 / 25卷 / 01期
关键词
nonparametric curve estimation; penalized least squares; splines; local adaptivity; rates of convergence;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Least squares penalized regression estimates with total variation penalties are considered. It is shown that these estimators are least squares splines with locally data adaptive placed knot points. The definition of these variable knot splines as minimizers of global functionals can be used to study their asymptotic properties. In particular, these results imply that the estimates adapt well to spatially inhomogeneous smoothness. We show rates of convergence in bounded variation function classes and discuss pointwise limiting distributions. An iterative algorithm based on stepwise addition and deletion of knot points is proposed and its consistency proved.
引用
收藏
页码:387 / 413
页数:27
相关论文
共 50 条
  • [1] MULTIVARIATE ADAPTIVE REGRESSION SPLINES
    FRIEDMAN, JH
    ANNALS OF STATISTICS, 1991, 19 (01): : 1 - 67
  • [2] Learning to rank by using multivariate adaptive regression splines and conic multivariate adaptive regression splines
    Altinok, Gulsah
    Karagoz, Pinar
    Batmaz, Inci
    COMPUTATIONAL INTELLIGENCE, 2021, 37 (01) : 371 - 408
  • [3] Locally optimal adaptive smoothing splines
    Kim, Heeyoung
    Huo, Xiaoming
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (03) : 665 - 680
  • [4] Adaptive regression splines in the Cox model
    LeBlanc, M
    Crowley, J
    BIOMETRICS, 1999, 55 (01) : 204 - 213
  • [5] MULTIVARIATE ADAPTIVE REGRESSION SPLINES - DISCUSSION
    BUJA, A
    DUFFY, D
    HASTIE, T
    TIBSHIRANI, R
    ANNALS OF STATISTICS, 1991, 19 (01): : 93 - 99
  • [6] Spatially adaptive Bayesian penalized regression splines (P-splines)
    Baladandayuthapani, V
    Mallick, BK
    Carroll, RJ
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (02) : 378 - 394
  • [7] A convex version of multivariate adaptive regression splines
    Martinez, Diana L.
    Shih, Dachuan T.
    Chen, Victoria C. P.
    Kim, Seoung Bum
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 81 : 89 - 106
  • [8] Bayesian adaptive regression splines for hierarchical data
    Bigelow, Jamie L.
    Dunson, David B.
    BIOMETRICS, 2007, 63 (03) : 724 - 732
  • [9] Global optimization with multivariate adaptive regression splines
    Crino, Scott
    Brown, Donald E.
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (02): : 333 - 340
  • [10] Intrusion detection systems using adaptive regression splines
    Mukkamala, Srinivas
    Sung, Andrew H.
    Abraham, Ajith
    Ramos, Vitorino
    ENTERPRISE INFORMATION SYSTEMS VI, 2006, : 211 - +