Penalized angular regression for personalized predictions

被引:0
|
作者
Hellton, Kristoffer H. [1 ,2 ]
机构
[1] Norwegian Comp Ctr, Oslo, Norway
[2] Univ Oslo, Dept Math, Oslo, Norway
关键词
angular estimation; cosine similarity; hyperspherical coordinates; penalized regression; personalization; personalized predictions; SELECTION; DISTRIBUTIONS;
D O I
10.1111/sjos.12574
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The method therefore penalizes the normalized regression coefficients, or the angles of the regression coefficients in a hyperspherical parametrization, introducing a new angle-based class of penalties. PAN hence combines two novel concepts: penalizing the normalized coefficients and personalization. For an orthogonal design matrix, we show that the PAN estimator is the solution to a low-dimensional eigenvector equation. Based on the hyperspherical parametrization, we construct an efficient algorithm to calculate the PAN estimator. We propose a parametric bootstrap procedure for selecting the tuning parameter, and simulations show that PAN regression can outperform ordinary least squares, ridge regression and other penalized regression methods in terms of prediction error. Finally, we demonstrate the method in a medical application.
引用
收藏
页码:184 / 212
页数:29
相关论文
共 50 条
  • [21] Multidimensional penalized signal regression
    Marx, BD
    Eilers, PHC
    [J]. TECHNOMETRICS, 2005, 47 (01) : 13 - 22
  • [22] Penalized quantile regression tree
    Kim, Jaeoh
    Cho, HyungJun
    Bang, Sungwan
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) : 1361 - 1371
  • [23] SORTED CONCAVE PENALIZED REGRESSION
    Feng, Long
    Zhang, Cun-Hui
    [J]. ANNALS OF STATISTICS, 2019, 47 (06): : 3069 - 3098
  • [24] Penalized wavelet monotone regression
    Antoniadis, Anestis
    Bigot, Jeremie
    Gijbels, Irene
    [J]. STATISTICS & PROBABILITY LETTERS, 2007, 77 (16) : 1608 - 1621
  • [25] Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure
    Allegrini, Franco
    Braga, Jez W. B.
    Moreira, Alessandro C. O.
    Olivieri, Alejandro C.
    [J]. ANALYTICA CHIMICA ACTA, 2018, 1011 : 20 - 27
  • [26] Penalized regression with individual deviance effects
    Perperoglou, Aris
    Eilers, Paul H. C.
    [J]. COMPUTATIONAL STATISTICS, 2010, 25 (02) : 341 - 361
  • [27] Spatiotemporal Exposure Prediction with Penalized Regression
    Nathan A. Ryder
    Joshua P. Keller
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2023, 28 : 260 - 278
  • [28] On knot placement for penalized spline regression
    Yao, Fang
    Lee, Thomas C. M.
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2008, 37 (03) : 259 - 267
  • [29] On knot placement for penalized spline regression
    Fang Yao
    Thomas C. M. Lee
    [J]. Journal of the Korean Statistical Society, 2008, 37 : 259 - 267
  • [30] Log-penalized linear regression
    Sweetkind-Singer, JA
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 286 - 286