Penalized angular regression for personalized predictions

被引:0
|
作者
Hellton, Kristoffer H. [1 ,2 ]
机构
[1] Norwegian Comp Ctr, Oslo, Norway
[2] Univ Oslo, Dept Math, Oslo, Norway
关键词
angular estimation; cosine similarity; hyperspherical coordinates; penalized regression; personalization; personalized predictions; SELECTION; DISTRIBUTIONS;
D O I
10.1111/sjos.12574
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The method therefore penalizes the normalized regression coefficients, or the angles of the regression coefficients in a hyperspherical parametrization, introducing a new angle-based class of penalties. PAN hence combines two novel concepts: penalizing the normalized coefficients and personalization. For an orthogonal design matrix, we show that the PAN estimator is the solution to a low-dimensional eigenvector equation. Based on the hyperspherical parametrization, we construct an efficient algorithm to calculate the PAN estimator. We propose a parametric bootstrap procedure for selecting the tuning parameter, and simulations show that PAN regression can outperform ordinary least squares, ridge regression and other penalized regression methods in terms of prediction error. Finally, we demonstrate the method in a medical application.
引用
收藏
页码:184 / 212
页数:29
相关论文
共 50 条
  • [31] Support vector regression with penalized likelihood
    Uemoto, Takumi
    Naito, Kanta
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 174
  • [32] Penalized solutions to functional regression problems
    Harezlak, Jaroslaw
    Coull, Brent A.
    Laird, Nan M.
    Magari, Shannon R.
    Christiani, David C.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (10) : 4911 - 4925
  • [33] Penalized additive neural network regression
    Shin, Jae-Kyung
    Bak, Kwan-Young
    Koo, Ja-Yong
    [J]. INTELLIGENT DATA ANALYSIS, 2022, 26 (06) : 1597 - 1616
  • [34] The influence function of penalized regression estimators
    Ollerer, Viktoria
    Croux, Christophe
    Alfons, Andreas
    [J]. STATISTICS, 2015, 49 (04) : 741 - 765
  • [35] Multilocus association testing with penalized regression
    Basu, Saonli
    Pan, Wei
    Shen, Xiaotong
    Oetting, William S.
    [J]. GENETIC EPIDEMIOLOGY, 2011, 35 (08) : 755 - 765
  • [36] Penalized versions of functional PLS regression
    Aguilera, A. M.
    Aguilera-Morillo, M. C.
    Preda, C.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 154 : 80 - 92
  • [37] Penalized function-on-function regression
    Andrada E. Ivanescu
    Ana-Maria Staicu
    Fabian Scheipl
    Sonja Greven
    [J]. Computational Statistics, 2015, 30 : 539 - 568
  • [38] Shrinkage priors for Bayesian penalized regression
    van Erp, Sara
    Oberski, Daniel L.
    Mulder, Joris
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2019, 89 : 31 - 50
  • [39] Spatiotemporal Exposure Prediction with Penalized Regression
    Ryder, Nathan A.
    Keller, Joshua P.
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2023, 28 (02) : 260 - 278
  • [40] A general framework for prediction in penalized regression
    Carballo, Alba
    Durban, Maria
    Kauermann, Goeran
    Lee, Dae-Jin
    [J]. STATISTICAL MODELLING, 2021, 21 (04) : 293 - 312