Finite-size scaling theory: Quantitative and qualitative approaches to critical phenomena

被引:3
|
作者
Ardourel, Vincent [1 ]
Bangu, Sorin [2 ]
机构
[1] Univ Paris 1 Pantheon Sorbonne, CNRS, IHPST, Paris, France
[2] Univ Bergen, Philosophy Dept, 12-13 Sydnessplass, N-5007 Bergen, Norway
关键词
Finite-size scaling; Phase transitions; Critical phenomena; Renormalization group; Finite systems; Quantitative predictions; Infinite systems; PHASE-TRANSITIONS; EMERGENCE; APPROXIMATION; IDEALIZATIONS; SINGULARITIES; PHYSICS; LIMIT;
D O I
10.1016/j.shpsa.2023.05.010
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
The finite-size scaling (FSS) theory is a relatively new and important attempt to study critical phenomena; this paper aims to contribute to clarifying the philosophical significance of this theory. We maintain that, contrary to initial appearances and to some recent claims in the literature, the FSS theory cannot arbitrate the debate between the reductionists and anti-reductionists about phase transitions. Although the theory allows scientists to provide predictions for finite systems, the analysis we carry on here shows that it involves the intertwinement of both finite and infinite systems. But, we argue, the FSS theory has another virtue, as it provides quantitative predictions and explanations for finite systems close to the critical point; it thus complements in a distinctive manner the standard Renormalization Group qualitative approach relying on infinite systems.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 50 条
  • [31] Finite-size correlation length and violations of finite-size scaling
    Caracciolo, S
    Gambassi, A
    Gubinelli, M
    Pelissetto, A
    EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (02): : 255 - 265
  • [32] Finite-size correlation length and violations of finite-size scaling
    S. Caracciolo
    A. Gambassi
    M. Gubinelli
    A. Pelissetto
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 20 (2): : 255 - 265
  • [33] Finite-size scaling and critical exponents of the real antiferromagnetic model
    Murtazaev, AK
    Kamilov, IK
    Aliev, KH
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 204 (1-2) : 151 - 158
  • [34] Finite-size analysis in neural network classification of critical phenomena
    Chertenkov V.
    Burovski E.
    Shchur L.
    Physical Review E, 2023, 108 (03)
  • [35] FINITE SIZE SCALING APPROACH TO SURFACE CRITICAL PHENOMENA
    DROZ, M
    MALASPINAS, A
    STELLA, AL
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (10): : L245 - L249
  • [36] Locating the QCD critical endpoint through finite-size scaling
    Antoniou, N. G.
    Diakonos, F. K.
    Maintas, X. N.
    Tsagkarakis, C. E.
    PHYSICAL REVIEW D, 2018, 97 (03)
  • [37] THE RELATION BETWEEN AMPLITUDES AND CRITICAL EXPONENTS IN FINITE-SIZE SCALING
    NIGHTINGALE, P
    BLOTE, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (17): : L657 - L664
  • [38] Critical-point finite-size scaling in the microcanonical ensemble
    Bruce, AD
    Wilding, NB
    PHYSICAL REVIEW E, 1999, 60 (04): : 3748 - 3760
  • [39] Critical finite-size scaling with constraints: Fisher renormalization revisited
    Krech, M
    COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XII, 2000, 85 : 71 - 85
  • [40] Critical dynamics in a binary fluid: Simulations and finite-size scaling
    Das, Subir K.
    Fisher, Michael E.
    Sengers, Jan V.
    Horbach, Juergen
    Binder, Kurt
    PHYSICAL REVIEW LETTERS, 2006, 97 (02)