Finite-size scaling theory: Quantitative and qualitative approaches to critical phenomena

被引:3
|
作者
Ardourel, Vincent [1 ]
Bangu, Sorin [2 ]
机构
[1] Univ Paris 1 Pantheon Sorbonne, CNRS, IHPST, Paris, France
[2] Univ Bergen, Philosophy Dept, 12-13 Sydnessplass, N-5007 Bergen, Norway
关键词
Finite-size scaling; Phase transitions; Critical phenomena; Renormalization group; Finite systems; Quantitative predictions; Infinite systems; PHASE-TRANSITIONS; EMERGENCE; APPROXIMATION; IDEALIZATIONS; SINGULARITIES; PHYSICS; LIMIT;
D O I
10.1016/j.shpsa.2023.05.010
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
The finite-size scaling (FSS) theory is a relatively new and important attempt to study critical phenomena; this paper aims to contribute to clarifying the philosophical significance of this theory. We maintain that, contrary to initial appearances and to some recent claims in the literature, the FSS theory cannot arbitrate the debate between the reductionists and anti-reductionists about phase transitions. Although the theory allows scientists to provide predictions for finite systems, the analysis we carry on here shows that it involves the intertwinement of both finite and infinite systems. But, we argue, the FSS theory has another virtue, as it provides quantitative predictions and explanations for finite systems close to the critical point; it thus complements in a distinctive manner the standard Renormalization Group qualitative approach relying on infinite systems.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 50 条
  • [41] Finite-size scaling and universality above the upper critical dimensionality
    Luijten, E
    Blote, HWJ
    PHYSICAL REVIEW LETTERS, 1996, 76 (10) : 1557 - 1561
  • [42] ON THE QUANTUM FINITE-SIZE SCALING
    KORUTCHEVA, ER
    TONCHEV, NS
    PHYSICA A, 1993, 195 (1-2): : 215 - 222
  • [43] Electronic structure critical parameters from finite-size scaling
    Neirotti, JP
    Serra, P
    Kais, S
    PHYSICAL REVIEW LETTERS, 1997, 79 (17) : 3142 - 3145
  • [44] Microcanonical Finite-Size Scaling
    Michael Kastner
    Michael Promberger
    Alfred Hüller
    Journal of Statistical Physics, 2000, 99 : 1251 - 1264
  • [45] Microcanonical finite-size scaling
    Kastner, M
    Promberger, M
    Hüller, A
    JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (5-6) : 1251 - 1264
  • [46] FINITE-SIZE SCALING THEORY FOR NON-LINEAR RELAXATION
    SANCHO, JM
    SANMIGUEL, M
    GUNTON, JD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (12): : L443 - L447
  • [47] Violation of finite-size scaling in the spherical limit of the ρ4 theory
    Chen, XS
    Dohm, V
    PHYSICA B, 2000, 284 : 45 - 46
  • [48] Universal finite-size scaling for percolation theory in high dimensions
    Kenna, Ralph
    Berche, Bertrand
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (23)
  • [49] Non-perturbative Approaches in Nanoscience and Corrections to Finite-Size Scaling
    Kaupuzs, J.
    Melnik, R. V. N.
    COUPLED MATHEMATICAL MODELS FOR PHYSICAL AND BIOLOGICAL NANOSCALE SYSTEMS AND THEIR APPLICATIONS, 2018, 232 : 65 - 73
  • [50] Finite-size effects in dynamics: Critical vs. coarsening phenomena
    Das, Subir K.
    Roy, Sutapa
    Majumder, Suman
    Ahmad, Shaista
    EPL, 2012, 97 (06)