Finite-size scaling theory: Quantitative and qualitative approaches to critical phenomena

被引:3
|
作者
Ardourel, Vincent [1 ]
Bangu, Sorin [2 ]
机构
[1] Univ Paris 1 Pantheon Sorbonne, CNRS, IHPST, Paris, France
[2] Univ Bergen, Philosophy Dept, 12-13 Sydnessplass, N-5007 Bergen, Norway
关键词
Finite-size scaling; Phase transitions; Critical phenomena; Renormalization group; Finite systems; Quantitative predictions; Infinite systems; PHASE-TRANSITIONS; EMERGENCE; APPROXIMATION; IDEALIZATIONS; SINGULARITIES; PHYSICS; LIMIT;
D O I
10.1016/j.shpsa.2023.05.010
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
The finite-size scaling (FSS) theory is a relatively new and important attempt to study critical phenomena; this paper aims to contribute to clarifying the philosophical significance of this theory. We maintain that, contrary to initial appearances and to some recent claims in the literature, the FSS theory cannot arbitrate the debate between the reductionists and anti-reductionists about phase transitions. Although the theory allows scientists to provide predictions for finite systems, the analysis we carry on here shows that it involves the intertwinement of both finite and infinite systems. But, we argue, the FSS theory has another virtue, as it provides quantitative predictions and explanations for finite systems close to the critical point; it thus complements in a distinctive manner the standard Renormalization Group qualitative approach relying on infinite systems.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 50 条
  • [21] Critical phenomena without "hyper scaling": How is the finite-size scaling analysis of Monte Carlo data affected?
    Binder, K.
    COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS XX, CSP-2007: PROCEEDINGS OF THE 20TH WORKSHOP, 2010, 7 : 29 - 33
  • [22] CROSSOVER PHENOMENA AND FINITE-SIZE SCALING ANALYSIS OF NUMERICAL SIMULATIONS
    BINDER, K
    DEUTSCH, HP
    EUROPHYSICS LETTERS, 1992, 18 (08): : 667 - 672
  • [23] CRITICAL PHENOMENA IN THE FINITE-SIZE SYSTEMS WITH CYLINDRICAL GEOMETRY
    CHALYI, AV
    CHALYI, KA
    UKRAINSKII FIZICHESKII ZHURNAL, 1992, 37 (09): : 1434 - 1440
  • [24] CRITICAL EXPONENT OF PERCOLATION CONDUCTIVITY BY FINITE-SIZE SCALING
    SAHIMI, M
    HUGHES, BD
    SCRIVEN, LE
    DAVIS, HT
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (16): : L521 - L527
  • [25] Finite-size scaling of the Glauber model of critical dynamics
    Luscombe, JH
    Luban, M
    Reynolds, JP
    PHYSICAL REVIEW E, 1996, 53 (06): : 5852 - 5860
  • [26] Finite-size scaling above the upper critical dimension
    Wittmann, Matthew
    Young, A. P.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [27] Effect of anisotropy on finite-size scaling in percolation theory
    Masihi, Mohsen
    King, Peter R.
    Nurafza, Peyman
    PHYSICAL REVIEW E, 2006, 74 (04):
  • [28] FINITE-SIZE SCALING IN HAMILTONIAN FIELD-THEORY
    HAMER, CJ
    BARBER, MN
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (05): : L169 - L174
  • [29] Finite-size scaling theory for explosive percolation transitions
    Cho, Y. S.
    Kim, S. -W.
    Noh, J. D.
    Kahng, B.
    Kim, D.
    PHYSICAL REVIEW E, 2010, 82 (04):
  • [30] Finite-size scaling theory for anisotropic percolation models
    Sinha, Santanu
    Santra, S. B.
    INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE, 2008, 82 (07): : 919 - 927