Regression applied to symbolic interval-spatial data

被引:0
|
作者
Freitas, Wanessa W. L. [1 ]
de Souza, Renata M. C. R. [1 ]
Amaral, Getulio J. A. [2 ]
de Moraes, Ronei M. [3 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Ave Jornalista Anibal Fernandes S-N,Cidade Univ, BR-50740560 Recife, PE, Brazil
[2] Univ Fed Pernambuco, Dept Estat, Ave Jornalista Anibal Fernandes S-N,Cidade Univ, BR-50740560 Recife, PE, Brazil
[3] Univ Fed Paraiba, Dept Estat, BR-58050585 Joao Pessoa, PB, Brazil
关键词
Symbolic data analysis; Interval data; Spatial analysis; Regression; MODEL;
D O I
10.1007/s10489-023-05051-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symbolic data analysis is a research area related to machine learning and statistics, which provides tools to describe geo-objects, and enables several types of variables to be dealt with, including interval type variables. Moreover, despite the recent progress in understanding symbolic data, there are no studies in the literature that address this type of data in the context of spatial data analysis. Thus, in this paper, we propose two different approaches of the spatial regression model for symbolic interval-valued data. The first fits a linear regression model on the minimum and maximum values of the interval values and the second fits a linear regression model on the center and range values of the interval. In order to evaluate the performance of these approaches, we have performed Monte Carlo simulations in which we calculated the mean value of the performance metric of the models analyzed. Furthermore, we also analyzed two applications involving real data. In the first, we examined the performance of the models in the Brazilian State of Pernambuco. In the second application, we analyzed the performance of the models for the Brazilian Northeastern region. Both applications were related to socioeconomic variables. We observed that in areas with less spatial variability, the interval spatial regression model performs better when compared with a usual method. When considering areas with a higher spatial variability, both ways presented similar results.
引用
收藏
页码:1545 / 1565
页数:21
相关论文
共 50 条
  • [1] Regression applied to symbolic interval-spatial data
    Wanessa W. L. Freitas
    Renata M. C. R. de Souza
    Getúlio J. A. Amaral
    Ronei M. de Moraes
    Applied Intelligence, 2024, 54 : 1545 - 1565
  • [2] Robust regression with application to symbolic interval data
    Fagundes, Roberta A. A.
    de Souza, Renata M. C. R.
    Cysneiros, Francisco Jose A.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (01) : 564 - 573
  • [3] A robust method for linear regression of symbolic interval data
    Domingues, Marco A. O.
    de Souza, Renata M. C. R.
    Cysneiros, Francisco Jose A.
    PATTERN RECOGNITION LETTERS, 2010, 31 (13) : 1991 - 1996
  • [4] Radial Basis Function Networks With Linear Interval Regression Weights for Symbolic Interval Data
    Su, Shun-Feng
    Chuang, Chen-Chia
    Tao, C. W.
    Jeng, Jin-Tsong
    Hsiao, Chih-Ching
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (01): : 69 - 80
  • [5] Nonlinear regression applied to interval-valued data
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (03) : 809 - 824
  • [6] Nonlinear regression applied to interval-valued data
    Eufrásio de A. Lima Neto
    Francisco de A. T. de Carvalho
    Pattern Analysis and Applications, 2017, 20 : 809 - 824
  • [7] Logistic regression-based pattern classifiers for symbolic interval data
    Renata M. C. R. de Souza
    Diego C. F. Queiroz
    Francisco José A. Cysneiros
    Pattern Analysis and Applications, 2011, 14 : 273 - 282
  • [8] Logistic regression-based pattern classifiers for symbolic interval data
    de Souza, Renata M. C. R.
    Queiroz, Diego C. F.
    Cysneiros, Francisco Jose A.
    PATTERN ANALYSIS AND APPLICATIONS, 2011, 14 (03) : 273 - 282
  • [9] Weighted Linear Regression for Symbolic Interval-Values Data with Outliers
    Chuang, Chen-Chia
    Wang, Chien-Ming
    Li, Chih-Wen
    ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 4, 2010, : 511 - 515
  • [10] Dynamic time series smoothing for symbolic interval data applied to neuroscience
    Nascimento, Diego C.
    Pimentel, Bruno
    Souza, Renata
    Leite, Joao P.
    Edwards, Dylan J.
    Santos, Taiza E. G.
    Louzada, Francisco
    INFORMATION SCIENCES, 2020, 517 : 415 - 426