Dynamic time series smoothing for symbolic interval data applied to neuroscience

被引:7
|
作者
Nascimento, Diego C. [1 ]
Pimentel, Bruno [1 ]
Souza, Renata [2 ]
Leite, Joao P. [3 ]
Edwards, Dylan J. [4 ,5 ]
Santos, Taiza E. G. [3 ]
Louzada, Francisco [1 ]
机构
[1] Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
[2] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
[3] Univ Sao Paulo, Ribeirao Preto Med Sch, Ribeirao Preto, Brazil
[4] Moss Rehabil Res Inst, Elkins Pk, PA USA
[5] Edith Cowan Univ, Sch Med & Hlth Sci, Joondalup, WA, Australia
基金
巴西圣保罗研究基金会;
关键词
State space model; Symbolic data analysis; Verticality perception; LINEAR-REGRESSION; ROBUST REGRESSION; MODELS;
D O I
10.1016/j.ins.2019.12.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work aimed to appraise a multivariate time series, high-dimensionality data-set, presented as intervals using a Symbolic Data Analysis (SDA) approach. SDA reduces data dimensionality, considering the complexity of the model information through a set-valued (interval or multi-valued). Additionally, Dynamic Linear Models (DLM) are distinguished by modeling univariate or multivariate time series in the presence of non-stationarity, structural changes and irregular patterns. We considered neurophysiological (EEG) data associated with experimental manipulation of verticality perception in humans, using transcranial electrical stimulation. The innovation of the present work is centered on use of a dynamic linear model with SDA methodology, and SDA applications for analyzing EEG data. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 50 条
  • [1] Regression applied to symbolic interval-spatial data
    Freitas, Wanessa W. L.
    de Souza, Renata M. C. R.
    Amaral, Getulio J. A.
    de Moraes, Ronei M.
    APPLIED INTELLIGENCE, 2024, 54 (02) : 1545 - 1565
  • [2] Regression applied to symbolic interval-spatial data
    Wanessa W. L. Freitas
    Renata M. C. R. de Souza
    Getúlio J. A. Amaral
    Ronei M. de Moraes
    Applied Intelligence, 2024, 54 : 1545 - 1565
  • [3] Time series modelling of neuroscience data
    Ben Mabrouk, Anouar
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (04) : 918 - 919
  • [4] TIME SERIES MODELING OF NEUROSCIENCE DATA
    Ombao, Hernando
    JOURNAL OF TIME SERIES ANALYSIS, 2013, 34 (06) : 745 - 746
  • [5] Smoothing methodology for time series data
    Khosrowshahi, F.
    CHALLENGES, OPPORTUNITIES AND SOLUTIONS IN STRUCTURAL ENGINEERING AND CONSTRUCTION, 2010, : 933 - 937
  • [6] A hybrid model for symbolic interval time series forecasting
    Maia, Andre Luis S.
    de Carvalho, Francisco de A. T.
    Ludermir, Teresa B.
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 934 - 941
  • [7] Symbolic interval-valued data analysis for time series based on auto-interval-regressive models
    Lin, Liang-Ching
    Chien, Hsiang-Lin
    Lee, Sangyeol
    STATISTICAL METHODS AND APPLICATIONS, 2021, 30 (01): : 295 - 315
  • [8] Symbolic interval-valued data analysis for time series based on auto-interval-regressive models
    Liang-Ching Lin
    Hsiang-Lin Chien
    Sangyeol Lee
    Statistical Methods & Applications, 2021, 30 : 295 - 315
  • [9] Modeling interval trendlines: Symbolic singular spectrum analysis for interval time series
    de Carvalho, Miguel
    Martos, Gabriel
    JOURNAL OF FORECASTING, 2022, 41 (01) : 167 - 180
  • [10] Symbolic Dynamic Analysis of Physiological Time Series
    Liao, Fuyuan
    Wang, Jue
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION WORKSHOP: IITA 2008 WORKSHOPS, PROCEEDINGS, 2008, : 628 - +