Dynamic time series smoothing for symbolic interval data applied to neuroscience

被引:7
|
作者
Nascimento, Diego C. [1 ]
Pimentel, Bruno [1 ]
Souza, Renata [2 ]
Leite, Joao P. [3 ]
Edwards, Dylan J. [4 ,5 ]
Santos, Taiza E. G. [3 ]
Louzada, Francisco [1 ]
机构
[1] Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
[2] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
[3] Univ Sao Paulo, Ribeirao Preto Med Sch, Ribeirao Preto, Brazil
[4] Moss Rehabil Res Inst, Elkins Pk, PA USA
[5] Edith Cowan Univ, Sch Med & Hlth Sci, Joondalup, WA, Australia
基金
巴西圣保罗研究基金会;
关键词
State space model; Symbolic data analysis; Verticality perception; LINEAR-REGRESSION; ROBUST REGRESSION; MODELS;
D O I
10.1016/j.ins.2019.12.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work aimed to appraise a multivariate time series, high-dimensionality data-set, presented as intervals using a Symbolic Data Analysis (SDA) approach. SDA reduces data dimensionality, considering the complexity of the model information through a set-valued (interval or multi-valued). Additionally, Dynamic Linear Models (DLM) are distinguished by modeling univariate or multivariate time series in the presence of non-stationarity, structural changes and irregular patterns. We considered neurophysiological (EEG) data associated with experimental manipulation of verticality perception in humans, using transcranial electrical stimulation. The innovation of the present work is centered on use of a dynamic linear model with SDA methodology, and SDA applications for analyzing EEG data. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 50 条
  • [31] Complexity analysis of stride interval time series by threshold dependent symbolic entropy
    Aziz, Wajid
    Arif, Muhammad
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2006, 98 (01) : 30 - 40
  • [32] Smoothing the Catalan tourism micro-data time series
    Artis, Ortuno, M.
    Carrion, Silvestre, J.L.
    Costa, Saenz De San Pedro, A.
    Surinach, Caralt, J.
    Questiio, 2002, 26 (1-2): : 197 - 211
  • [33] SMOOTHING TIME-SERIES DATA BY NONMETRIC POLYTONE CURVES
    RAVEH, A
    MOSHEIOV, G
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1988, 17 (02) : 515 - 536
  • [34] A Symbolic Dynamic Filtering Approach to Unsupervised Hierarchical Feature Extraction from Time-Series Data
    Akintayo, Adedotun
    Sarkar, Soumik
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 5824 - 5829
  • [35] Symbolic algorithm for time series data based on statistic feature
    Zhong, Qing-Liu
    Cai, Zi-Xing
    Jisuanji Xuebao/Chinese Journal of Computers, 2008, 31 (10): : 1857 - 1864
  • [36] Symbolic representations of time series applied to biometric recognition based on ECG signals
    Passos, Henrique dos Santos
    Silva Teodoro, Felipe Gustavo
    Duru, Bruno Matarazzo
    de Oliveira, Edenilton Lima
    Peres, Sarajane M.
    Lima, Clodoaldo A. M.
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 3199 - 3207
  • [37] Robust estimation of confidence interval in neural networks applied to time series
    Salas, R
    Torres, R
    Allende, H
    Moraga, C
    ARTIFICIAL NEURAL NETS PROBLEM SOLVING METHODS, PT II, 2003, 2687 : 441 - 448
  • [38] Gravitational smoothing of time series
    Gvishiani, A. D.
    Agayan, S. M.
    Bogoutdinov, Sh. R.
    Kagan, A. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (02): : 62 - 70
  • [39] A modal symbolic classifier for interval data
    Silva, Fabio C. D.
    de Carvalho, Francisco de A. T.
    de Souza, Renata M. C. R.
    Silva, Joyce Q.
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 50 - 59
  • [40] Multivariate time series analysis of neuroscience data: some challenges and opportunities
    Pourahmadi, Mohsen
    Noorbaloochi, Siamak
    CURRENT OPINION IN NEUROBIOLOGY, 2016, 37 : 12 - 15