Dynamic time series smoothing for symbolic interval data applied to neuroscience

被引:7
|
作者
Nascimento, Diego C. [1 ]
Pimentel, Bruno [1 ]
Souza, Renata [2 ]
Leite, Joao P. [3 ]
Edwards, Dylan J. [4 ,5 ]
Santos, Taiza E. G. [3 ]
Louzada, Francisco [1 ]
机构
[1] Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
[2] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
[3] Univ Sao Paulo, Ribeirao Preto Med Sch, Ribeirao Preto, Brazil
[4] Moss Rehabil Res Inst, Elkins Pk, PA USA
[5] Edith Cowan Univ, Sch Med & Hlth Sci, Joondalup, WA, Australia
基金
巴西圣保罗研究基金会;
关键词
State space model; Symbolic data analysis; Verticality perception; LINEAR-REGRESSION; ROBUST REGRESSION; MODELS;
D O I
10.1016/j.ins.2019.12.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work aimed to appraise a multivariate time series, high-dimensionality data-set, presented as intervals using a Symbolic Data Analysis (SDA) approach. SDA reduces data dimensionality, considering the complexity of the model information through a set-valued (interval or multi-valued). Additionally, Dynamic Linear Models (DLM) are distinguished by modeling univariate or multivariate time series in the presence of non-stationarity, structural changes and irregular patterns. We considered neurophysiological (EEG) data associated with experimental manipulation of verticality perception in humans, using transcranial electrical stimulation. The innovation of the present work is centered on use of a dynamic linear model with SDA methodology, and SDA applications for analyzing EEG data. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 50 条
  • [21] The dynamic distribution smoothing technique based on time series analysis
    College of Computer Science, Chongqing University, Chongqing 400044, China
    不详
    Tien Tzu Hsueh Pao, 2008, SUPPL. (147-151):
  • [22] Symbolic time-series analysis of neural data
    Lesher, S
    Guan, L
    Cohen, AH
    NEUROCOMPUTING, 2000, 32 (32-33) : 1073 - 1081
  • [23] Towards symbolic data mining in numerical time series
    Santamaría, A
    López-Illescas, A
    Perez-Perez, A
    Caraça-Valente, JP
    RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XXI, 2005, : 231 - 243
  • [24] Symbolic Time Series Representation for Stream Data Processing
    Sevcech, Jakub
    Bielikova, Maria
    2015 IEEE TRUSTCOM/BIGDATASE/ISPA, VOL 2, 2015, : 217 - 222
  • [25] The Smoothing of Time Series
    Crathorne, A. R.
    JOURNAL OF POLITICAL ECONOMY, 1932, 40 (03) : 427 - 428
  • [26] A New Representation of Interval Symbolic Data and Its Application in Dynamic Clustering
    Li, Wenhua
    Guo, Junpeng
    Chen, Ying
    Wang, Minglu
    JOURNAL OF CLASSIFICATION, 2016, 33 (01) : 149 - 165
  • [27] A New Representation of Interval Symbolic Data and Its Application in Dynamic Clustering
    Wenhua Li
    Junpeng Guo
    Ying Chen
    Minglu Wang
    Journal of Classification, 2016, 33 : 149 - 165
  • [28] Normalization of Interval Symbolic Data
    Guo, Junpeng
    Li, Wenhua
    Cheng, Sue
    2009 IEEE 16TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1 AND 2, PROCEEDINGS, 2009, : 1769 - +
  • [29] Conformal Prediction Interval for Dynamic Time-Series
    Xu, Chen
    Xie, Yao
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [30] Complexity analysis of stride interval time series by threshold dependent symbolic entropy
    Wajid Aziz
    Muhammad Arif
    European Journal of Applied Physiology, 2006, 98 : 30 - 40