A robust method for linear regression of symbolic interval data

被引:47
|
作者
Domingues, Marco A. O. [1 ]
de Souza, Renata M. C. R. [1 ]
Cysneiros, Francisco Jose A. [2 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, BR-50740540 Recife, PE, Brazil
[2] Univ Fed Pernambuco, Dept Estat, CCEN, BR-50740540 Recife, PE, Brazil
关键词
Symbolic interval-valued data; Symbolic data analysis; Symmetrical linear regression; Outliers;
D O I
10.1016/j.patrec.2010.06.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a new linear regression method for interval valued-data. The method is based on the symmetrical linear regression methodology such that the prediction of the lower and upper bounds of the interval value of the dependent variable is not damaged by the presence of interval-valued data out-liers. The method considers mid-points and ranges of the interval values assumed by the variables in the learning set. The prediction of the boundaries of an interval is accomplished through a combination of predictions from mid-point and range of the interval values. The evaluation of the method is based on the average behavior of a pooled root mean-square error. Experiments with real and simulated symbolic interval data sets demonstrate the usefulness of this symbolic symmetrical linear regression method. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1991 / 1996
页数:6
相关论文
共 50 条
  • [1] Robust regression with application to symbolic interval data
    Fagundes, Roberta A. A.
    de Souza, Renata M. C. R.
    Cysneiros, Francisco Jose A.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (01) : 564 - 573
  • [2] Centre and Range method for fitting a linear regression model to symbolic interval data
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1500 - 1515
  • [3] A Robust Prediction Method for Interval Symbolic Data
    Fagundes, Roberta A. A.
    de Souza, Renata M. C. R.
    Cysneiros, Francisco Jose A.
    [J]. 2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 1019 - +
  • [4] Radial Basis Function Networks With Linear Interval Regression Weights for Symbolic Interval Data
    Su, Shun-Feng
    Chuang, Chen-Chia
    Tao, C. W.
    Jeng, Jin-Tsong
    Hsiao, Chih-Ching
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (01): : 69 - 80
  • [5] Weighted Linear Regression for Symbolic Interval-Values Data with Outliers
    Chuang, Chen-Chia
    Wang, Chien-Ming
    Li, Chih-Wen
    [J]. ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 4, 2010, : 511 - 515
  • [6] A Convex Combination Method for Linear Regression with Interval Data
    Chanaim, Somsak
    Sriboonchitta, Songsak
    Rungruang, Chongkolnee
    [J]. INTEGRATED UNCERTAINTY IN KNOWLEDGE MODELLING AND DECISION MAKING, IUKM 2016, 2016, 9978 : 469 - 480
  • [7] Improving symbolic regression with interval arithmetic and linear scaling
    Keijzer, M
    [J]. GENETIC PROGRAMMING, PROCEEDINGS, 2003, 2610 : 70 - 82
  • [8] A new method of linear support vector regression with interval data
    Baymani, Mojtaba
    Salehi-M, Nima
    Saffaran, Hoda
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 857 - +
  • [9] Interval joint robust regression method
    de Carvalho, Francisco de A. T.
    Neto, Eufrasio de A. Lima
    Rosendo, Ullysses da N.
    [J]. NEUROCOMPUTING, 2021, 465 : 265 - 286
  • [10] Regression applied to symbolic interval-spatial data
    Freitas, Wanessa W. L.
    de Souza, Renata M. C. R.
    Amaral, Getulio J. A.
    de Moraes, Ronei M.
    [J]. APPLIED INTELLIGENCE, 2024, 54 (02) : 1545 - 1565