Regression applied to symbolic interval-spatial data

被引:0
|
作者
Freitas, Wanessa W. L. [1 ]
de Souza, Renata M. C. R. [1 ]
Amaral, Getulio J. A. [2 ]
de Moraes, Ronei M. [3 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Ave Jornalista Anibal Fernandes S-N,Cidade Univ, BR-50740560 Recife, PE, Brazil
[2] Univ Fed Pernambuco, Dept Estat, Ave Jornalista Anibal Fernandes S-N,Cidade Univ, BR-50740560 Recife, PE, Brazil
[3] Univ Fed Paraiba, Dept Estat, BR-58050585 Joao Pessoa, PB, Brazil
关键词
Symbolic data analysis; Interval data; Spatial analysis; Regression; MODEL;
D O I
10.1007/s10489-023-05051-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symbolic data analysis is a research area related to machine learning and statistics, which provides tools to describe geo-objects, and enables several types of variables to be dealt with, including interval type variables. Moreover, despite the recent progress in understanding symbolic data, there are no studies in the literature that address this type of data in the context of spatial data analysis. Thus, in this paper, we propose two different approaches of the spatial regression model for symbolic interval-valued data. The first fits a linear regression model on the minimum and maximum values of the interval values and the second fits a linear regression model on the center and range values of the interval. In order to evaluate the performance of these approaches, we have performed Monte Carlo simulations in which we calculated the mean value of the performance metric of the models analyzed. Furthermore, we also analyzed two applications involving real data. In the first, we examined the performance of the models in the Brazilian State of Pernambuco. In the second application, we analyzed the performance of the models for the Brazilian Northeastern region. Both applications were related to socioeconomic variables. We observed that in areas with less spatial variability, the interval spatial regression model performs better when compared with a usual method. When considering areas with a higher spatial variability, both ways presented similar results.
引用
收藏
页码:1545 / 1565
页数:21
相关论文
共 50 条
  • [11] Kohonen map-wise regression applied to interval data
    Souza, Leandro C.
    Pimentel, Bruno A.
    Filho, Telmo de M. Silva
    de Souza, Renata M. C. R.
    KNOWLEDGE-BASED SYSTEMS, 2021, 224
  • [12] Centre and Range method for fitting a linear regression model to symbolic interval data
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1500 - 1515
  • [13] Interval Fuzzy c-Regression Models with Competitive Agglomeration for Symbolic Interval-Valued Data
    Chen-Chia Chuang
    Jin-Tsong Jeng
    Wei-Yang Lin
    Chih-Ching Hsiao
    Chin-Wang Tao
    International Journal of Fuzzy Systems, 2020, 22 : 891 - 900
  • [14] Interval Fuzzy c-Regression Models with Competitive Agglomeration for Symbolic Interval-Valued Data
    Chuang, Chen-Chia
    Jeng, Jin-Tsong
    Lin, Wei-Yang
    Hsiao, Chih-Ching
    Tao, Chin-Wang
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2020, 22 (03) : 891 - 900
  • [15] Normalization of Interval Symbolic Data
    Guo, Junpeng
    Li, Wenhua
    Cheng, Sue
    2009 IEEE 16TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1 AND 2, PROCEEDINGS, 2009, : 1769 - +
  • [16] Constrained center and range joint model for interval-valued symbolic data regression
    Hao, Peng
    Guo, Junpeng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 116 : 106 - 138
  • [17] Regression Models for Symbolic Interval-Valued Variables
    Chacon, Jose Emmanuel
    Rodriguez, Oldemar
    ENTROPY, 2021, 23 (04)
  • [18] Improving symbolic regression with interval arithmetic and linear scaling
    Keijzer, M
    GENETIC PROGRAMMING, PROCEEDINGS, 2003, 2610 : 70 - 82
  • [19] Inequality constraints in regression models to symbolic interval variables
    Lima Neto, Eufrdsio de A.
    de Carvalho, Francisco de A. T.
    Coelho Neto, Jose F.
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 801 - 806
  • [20] A modal symbolic classifier for interval data
    Silva, Fabio C. D.
    de Carvalho, Francisco de A. T.
    de Souza, Renata M. C. R.
    Silva, Joyce Q.
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 50 - 59