6D Object Pose Estimation with Attention Aware Bi-gated Fusion

被引:0
|
作者
Wang, Laichao [1 ,2 ]
Lu, Weiding [1 ,2 ]
Tian, Yuan [3 ]
Guan, Yong [1 ,2 ]
Shao, Zhenzhou [1 ,2 ]
Shi, Zhiping [1 ]
机构
[1] Capital Normal Univ, Coll Informat Engn, Beijing 100048, Peoples R China
[2] Capital Normal Univ, Beijing Key Lab Light Ind Robot & Safety Verifica, Beijing 100048, Peoples R China
[3] Ind & Commercial Bank China Ltd, Beijing Branch, Beijing 100032, Peoples R China
来源
NEURAL INFORMATION PROCESSING, ICONIP 2023, PT II | 2024年 / 14448卷
关键词
Object pose estimation; Gated fusion; Attention mechanism;
D O I
10.1007/978-981-99-8082-6_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate object pose estimation is a prerequisite for successful robotic grasping tasks. Currently keypoint-based pose estimation methods using RGB-D data have shown promising results in simple environments. However, how to fuse the complementary features from RGB-D data is still a challenging task. To this end, this paper proposes a two-branch network with attention aware bi-gated fusion (A2BF) module for the keypoint-based 6D object pose estimation, named A2BNet for abbreviation. A2BF module consists of two key components, bidirectional gated fusion and attention mechanism modules to effectively extract information from both RGB and point cloud data, prioritizing crucial details while disregarding irrelevant information. Several A2BF modules can be embedded in the network to generate complementary texture and geometric information. Extensive experiments are conducted on the public LineMOD and Occlusion LineMOD datasets. Experimental results demonstrate that the average accuracy using the proposed method on both datasets can reach 99.8% and 67.6% respectively, outperforms the state-of-the-art methods.
引用
收藏
页码:573 / 585
页数:13
相关论文
共 50 条
  • [41] Fundamental Coordinate Space for Object 6D Pose Estimation
    Wan, Boyan
    Zhang, Chen
    IEEE ACCESS, 2024, 12 : 146430 - 146440
  • [42] Sparse Keypoint Models for 6D Object Pose Estimation
    Sadran, Emal
    Wurm, Kai M.
    Burschka, Darius
    2013 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR 2013), 2013, : 307 - 312
  • [43] Open-vocabulary object 6D pose estimation
    Corsetti, Jaime
    Boscaini, Davide
    Oh, Changjae
    Cavallaro, Andrea
    Poiesi, Fabio
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 18071 - 18080
  • [44] Focal segmentation for robust 6D object pose estimation
    Yuning Ye
    Hanhoon Park
    Multimedia Tools and Applications, 2024, 83 : 47563 - 47585
  • [45] Single-Stage 6D Object Pose Estimation
    Hu, Yinlin
    Fua, Pascal
    Wang, Wei
    Salzmann, Mathieu
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2927 - 2936
  • [46] ACCURATE 6D OBJECT POSE ESTIMATION BY POSE CONDITIONED MESH RECONSTRUCTION
    Castro, Pedro
    Armagan, Anil
    Kim, Tae-Kyun
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4147 - 4151
  • [47] SyMFM6D: Symmetry-Aware Multi-Directional Fusion for Multi-View 6D Object Pose Estimation
    Duffhauss, Fabian
    Koch, Sebastian
    Ziesche, Hanna
    Vien, Ngo Anh
    Neumann, Gerhard
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (09) : 5315 - 5322
  • [48] Global Hypothesis Generation for 6D Object Pose Estimation
    Michel, Frank
    Kirillov, Alexander
    Brachmann, Eric
    Krull, Alexander
    Gumhold, Stefan
    Savchynskyy, Bogdan
    Rother, Carsten
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 115 - 124
  • [49] Anchor-Based 6D Object Pose Estimation
    Liu, Zehao
    Wang, Hao
    Liu, Fuchang
    2021 IEEE 7TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY (ICVR 2021), 2021, : 33 - 40
  • [50] A Pose Proposal and Refinement Network for Better 6D Object Pose Estimation
    Trabelsi, Ameni
    Chaabane, Mohamed
    Blanchard, Nathaniel
    Beveridge, Ross
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2381 - 2390