6D Object Pose Estimation with Attention Aware Bi-gated Fusion

被引:0
|
作者
Wang, Laichao [1 ,2 ]
Lu, Weiding [1 ,2 ]
Tian, Yuan [3 ]
Guan, Yong [1 ,2 ]
Shao, Zhenzhou [1 ,2 ]
Shi, Zhiping [1 ]
机构
[1] Capital Normal Univ, Coll Informat Engn, Beijing 100048, Peoples R China
[2] Capital Normal Univ, Beijing Key Lab Light Ind Robot & Safety Verifica, Beijing 100048, Peoples R China
[3] Ind & Commercial Bank China Ltd, Beijing Branch, Beijing 100032, Peoples R China
来源
NEURAL INFORMATION PROCESSING, ICONIP 2023, PT II | 2024年 / 14448卷
关键词
Object pose estimation; Gated fusion; Attention mechanism;
D O I
10.1007/978-981-99-8082-6_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate object pose estimation is a prerequisite for successful robotic grasping tasks. Currently keypoint-based pose estimation methods using RGB-D data have shown promising results in simple environments. However, how to fuse the complementary features from RGB-D data is still a challenging task. To this end, this paper proposes a two-branch network with attention aware bi-gated fusion (A2BF) module for the keypoint-based 6D object pose estimation, named A2BNet for abbreviation. A2BF module consists of two key components, bidirectional gated fusion and attention mechanism modules to effectively extract information from both RGB and point cloud data, prioritizing crucial details while disregarding irrelevant information. Several A2BF modules can be embedded in the network to generate complementary texture and geometric information. Extensive experiments are conducted on the public LineMOD and Occlusion LineMOD datasets. Experimental results demonstrate that the average accuracy using the proposed method on both datasets can reach 99.8% and 67.6% respectively, outperforms the state-of-the-art methods.
引用
收藏
页码:573 / 585
页数:13
相关论文
共 50 条
  • [21] A RGB-D feature fusion network for occluded object 6D pose estimation
    Song, Yiwei
    Tang, Chunhui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6309 - 6319
  • [22] A Novel Depth and Color Feature Fusion Framework for 6D Object Pose Estimation
    Zhou, Guangliang
    Yan, Yi
    Wang, Deming
    Chen, Qijun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 1630 - 1639
  • [23] 6D Object Pose Estimation Based on Cross-Modality Feature Fusion
    Jiang, Meng
    Zhang, Liming
    Wang, Xiaohua
    Li, Shuang
    Jiao, Yijie
    SENSORS, 2023, 23 (19)
  • [24] SD-Pose: Structural Discrepancy Aware Category-Level 6D Object Pose Estimation
    Li, Guowei
    Zhu, Dongchen
    Zhang, Guanghui
    Shi, Wenjun
    Zhang, Tianyu
    Zhang, Xiaolin
    Li, Jiamao
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5674 - 5683
  • [25] CSA6D: Channel-Spatial Attention Networks for 6D Object Pose Estimation
    Chen, Tao
    Gu, Dongbing
    COGNITIVE COMPUTATION, 2022, 14 (02) : 702 - 713
  • [26] CSA6D: Channel-Spatial Attention Networks for 6D Object Pose Estimation
    Tao Chen
    Dongbing Gu
    Cognitive Computation, 2022, 14 : 702 - 713
  • [27] Occlusion-Aware Self-Supervised Monocular 6D Object Pose Estimation
    Wang, Gu
    Manhardt, Fabian
    Liu, Xingyu
    Ji, Xiangyang
    Tombari, Federico
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1788 - 1803
  • [28] Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention
    Liu, Jierui
    Cao, Zhiqiang
    Tang, Yingbo
    Liu, Xilong
    Tan, Min
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6728 - 6740
  • [29] SilhoNet: An RGB Method for 6D Object Pose Estimation
    Billings, Gideon
    Johnson-Roberson, Matthew
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3727 - 3734
  • [30] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622