Local minimizers for variational obstacle avoidance on Riemannian manifolds

被引:1
|
作者
Goodman, Jacob R. [1 ]
机构
[1] UAM, CSIC, UC3M, Inst Ciencias Matemat,UCM, Calle Nicolas Cabrera 13-15, Madrid 28049, Spain
来源
JOURNAL OF GEOMETRIC MECHANICS | 2023年 / 15卷 / 01期
关键词
bi-Jacobi fields; biconjugate points; local minimizers; Riemannian geometry; path planning; obstacle avoidance; SYSTEMS; SPLINES;
D O I
10.3934/jgm.2023003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a variational obstacle avoidance problem on complete Riemannian manifolds. That is, we minimize an action functional, among a set of admissible curves, which depends on an artificial potential function used to avoid obstacles. In particular, we generalize the theory of bi-Jacobi fields and biconjugate points and present necessary and sufficient conditions for optimality. Local minimizers of the action functional are divided into two categories-called Q-local minimizers and Omega-local minimizers-and subsequently classified, with local uniqueness results obtained in both cases.
引用
收藏
页码:59 / 72
页数:14
相关论文
共 50 条
  • [31] On Topological Index of Solutions for Variational Inequalities on Riemannian Manifolds
    Yeong-Cheng Liou
    Valeri Obukhovskii
    Jen-Chih Yao
    Set-Valued and Variational Analysis, 2012, 20 : 369 - 386
  • [32] On Topological Index of Solutions for Variational Inequalities on Riemannian Manifolds
    Liou, Yeong-Cheng
    Obukhovskii, Valeri
    Yao, Jen-Chih
    SET-VALUED AND VARIATIONAL ANALYSIS, 2012, 20 (03) : 369 - 386
  • [33] Variational splines on Riemannian manifolds with applications to integral geometry
    Pesenson, I
    ADVANCES IN APPLIED MATHEMATICS, 2004, 33 (03) : 548 - 572
  • [35] Mean Value Theorems for Riemannian Manifolds Via the Obstacle Problem
    Brian Benson
    Ivan Blank
    Jeremy LeCrone
    The Journal of Geometric Analysis, 2019, 29 : 2752 - 2775
  • [36] CUT LOCI, MINIMIZERS, AND WAVE-FRONTS IN RIEMANNIAN-MANIFOLDS WITH BOUNDARY
    ALEXANDER, SB
    BERG, ID
    BISHOP, RL
    MICHIGAN MATHEMATICAL JOURNAL, 1993, 40 (02) : 229 - 237
  • [37] Comparison of Local Obstacle Avoidance Algorithms
    Molinos, E.
    Pozuelo, J.
    Llamazares, A.
    Ocana, M.
    Lopez, J.
    COMPUTER AIDED SYSTEMS THEORY, PT II, 2013, 8112 : 39 - 46
  • [38] HOLDER CONTINUITY FOR VECTORIAL LOCAL MINIMIZERS OF VARIATIONAL INTEGRALS
    Shan, Yanan
    Gao, Hongya
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (01) : 289 - 297
  • [39] Reduction of Sufficient Conditions in Variational Obstacle Avoidance Problems
    Goodman, Jacob R.
    Colombo, Leonardo J.
    IFAC PAPERSONLINE, 2024, 58 (06): : 60 - 65
  • [40] Local Holder regularity of minimizers for nonlocal variational problems
    Novaga, Matteo
    Onoue, Fumihiko
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (10)