Local minimizers for variational obstacle avoidance on Riemannian manifolds

被引:1
|
作者
Goodman, Jacob R. [1 ]
机构
[1] UAM, CSIC, UC3M, Inst Ciencias Matemat,UCM, Calle Nicolas Cabrera 13-15, Madrid 28049, Spain
来源
JOURNAL OF GEOMETRIC MECHANICS | 2023年 / 15卷 / 01期
关键词
bi-Jacobi fields; biconjugate points; local minimizers; Riemannian geometry; path planning; obstacle avoidance; SYSTEMS; SPLINES;
D O I
10.3934/jgm.2023003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a variational obstacle avoidance problem on complete Riemannian manifolds. That is, we minimize an action functional, among a set of admissible curves, which depends on an artificial potential function used to avoid obstacles. In particular, we generalize the theory of bi-Jacobi fields and biconjugate points and present necessary and sufficient conditions for optimality. Local minimizers of the action functional are divided into two categories-called Q-local minimizers and Omega-local minimizers-and subsequently classified, with local uniqueness results obtained in both cases.
引用
收藏
页码:59 / 72
页数:14
相关论文
共 50 条