Variational splines on Riemannian manifolds with applications to integral geometry

被引:9
|
作者
Pesenson, I [1 ]
机构
[1] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
关键词
Riemannian manifold; Laplace-Beltrami operator; variational splines; hemispherical transform; spherical radon transform;
D O I
10.1016/j.aam.2003.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the classical theory of variational interpolating splines to the case of compact Riemannian manifolds. Our consideration includes in particular such problems as interpolation of a function by its values on a discrete set of points and interpolation by values of integrals over a family of submanifolds. The existence and uniqueness of interpolating variational spline on a Riemannian manifold is proven. Optimal properties of such splines are shown. The explicit formulas of variational splines in terms of the eigen functions of Laplace-Beltrami operator are found. It is also shown that in the case of interpolation on discrete sets of points variational splines converge to a function in C-k norms on manifolds. Applications of these results to the hemispherical and Radon transforms on the unit sphere are given. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:548 / 572
页数:25
相关论文
共 50 条
  • [1] Variational time discretization of Riemannian splines
    Heeren, Behrend
    Rumpf, Martin
    Wirth, Benedikt
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (01) : 61 - 104
  • [2] Smoothing splines on Riemannian manifolds, with applications to 3D shape space
    Kim, Kwang-Rae
    Dryden, Ian L.
    Le, Huiling
    Severn, Katie E.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2021, 83 (01) : 108 - 132
  • [3] High-Order Splines on Riemannian Manifolds
    Camarinha, Margarida
    Silva Leite, Fatima
    Crouch, Peter E.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 321 (01) : 158 - 178
  • [4] High-Order Splines on Riemannian Manifolds
    Margarida Camarinha
    Fátima Silva Leite
    Peter E. Crouch
    [J]. Proceedings of the Steklov Institute of Mathematics, 2023, 321 : 158 - 178
  • [5] Riemannian manifolds in noncommutative geometry
    Lord, Steven
    Rennie, Adam
    Varilly, Joseph C.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (07) : 1611 - 1638
  • [6] Geometry of homogeneous Riemannian manifolds
    Nikonorov Yu.G.
    Rodionov E.D.
    Slavskii V.V.
    [J]. Journal of Mathematical Sciences, 2007, 146 (6) : 6313 - 6390
  • [7] Integral geometry of tensor fields on a class of non-simple Riemannian manifolds
    Stefanov, Plamen
    Uhlmann, Gunther
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2008, 130 (01) : 239 - 268
  • [8] Some Applications of Integral Formulas in Riemannian Geometry and PDE’s
    Stefano Pigola
    Marco Rigoli
    Alberto G. Setti
    [J]. Milan Journal of Mathematics, 2003, 71 (1) : 219 - 281
  • [9] VARIATIONAL INVARIANTS OF RIEMANNIAN-MANIFOLDS
    SIEGEL, J
    WILLIAMS, F
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) : 689 - 705
  • [10] Liouville-Type Theorems and Applications to Geometry on Complete Riemannian Manifolds
    Chanyoung Sung
    [J]. Journal of Geometric Analysis, 2013, 23 : 96 - 105