Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide

被引:27
|
作者
Pak, Alexander Ya. [1 ]
Sotskov, Vadim [2 ]
Gumovskaya, Arina A. [1 ]
Vassilyeva, Yuliya Z. [1 ]
Bolatova, Zhanar S. [1 ]
Kvashnina, Yulia A. [3 ]
Mamontov, Gennady Ya. [1 ]
Shapeev, Alexander V. [2 ]
Kvashnin, Alexander G. [2 ]
机构
[1] Natl Res Tomsk Polytech Univ, 30 Lenin Ave, Tomsk 634050, Russia
[2] Skolkovo Inst Sci & Technol, Skolkovo Innovat Ctr, Bolshoi Blv 30,Bldg 1, Moscow 121205, Russia
[3] Pirogov Russian Natl Res Med Univ, 1 Ostrovityanova St, Moscow 117997, Russia
基金
俄罗斯科学基金会;
关键词
INITIO MOLECULAR-DYNAMICS; WALLED CARBON NANOTUBES; MECHANICAL-PROPERTIES; SELF-DIFFUSION; ARC-DISCHARGE; SINGLE-CRYSTALS; PHASE-STABILITY; METAL CARBIDES; TRANSITION; AIR;
D O I
10.1038/s41524-022-00955-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Synthesis of high-entropy carbides (HEC) requires high temperatures that can be provided by electric arc plasma method. However, the formation temperature of a single-phase sample remains unknown. Moreover, under some temperatures multi-phase structures can emerge. In this work, we developed an approach for a controllable synthesis of HEC TiZrNbHfTaC5 based on theoretical and experimental techniques. We used Canonical Monte Carlo (CMC) simulations with the machine learning interatomic potentials to determine the temperature conditions for the formation of single-phase and multi-phase samples. In full agreement with the theory, the single-phase sample, produced with electric arc discharge, was observed at 2000 K. Below 1200 K, the sample decomposed into (Ti-Nb-Ta)C, and a mixture of (Zr-Hf-Ta)C, (Zr-Nb-Hf)C, (Zr-Nb)C, and (Zr-Ta)C. Our results demonstrate the conditions for the formation of HEC and we anticipate that our approach can pave the way towards targeted synthesis of multicomponent materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide
    Alexander Ya. Pak
    Vadim Sotskov
    Arina A. Gumovskaya
    Yuliya Z. Vassilyeva
    Zhanar S. Bolatova
    Yulia A. Kvashnina
    Gennady Ya. Mamontov
    Alexander V. Shapeev
    Alexander G. Kvashnin
    npj Computational Materials, 9
  • [2] Synthesis of TiZrNbHfTaC5 High-Entropy Carbide Powder: Sintering and Radiation Resistance Research
    Pak, A. Ya.
    Uglov, V. V.
    Skuratov, V. A.
    Svinukhova, A. A.
    Povalyaev, P. V.
    Korchagina, A. P.
    RUSSIAN PHYSICS JOURNAL, 2024, 67 (05) : 489 - 495
  • [3] Synthesis of transition metal carbides and high-entropy carbide TiZrNbHfTaC5 in self-shielding DC arc discharge plasma
    Pak, A. Ya
    Grinchuk, P. S.
    Gumovskaya, A. A.
    Vassilyeva, Yu Z.
    CERAMICS INTERNATIONAL, 2022, 48 (03) : 3818 - 3825
  • [4] High-entropy alloy catalysts: high-throughput and machine learning-driven design
    Chen, Lixin
    Chen, Zhiwen
    Yao, Xue
    Su, Baoxian
    Chen, Weijian
    Pang, Xin
    Kim, Keun-Su
    Singh, Chandra Veer
    Zou, Yu
    JOURNAL OF MATERIALS INFORMATICS, 2022, 2 (04):
  • [5] Current status and prospects in machine learning-driven design for refractory high-entropy alloys
    Gao, Tianchuang
    Gao, Jianbao
    Li, Qian
    Zhang, Lijun
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2024, 52 (01): : 27 - 44
  • [6] Design of high-performance high-entropy nitride ceramics via machine learning-driven strategy
    Zhou, Qian
    Xu, Feng
    Gao, Chengzuan
    Zhao, Wenxuan
    Shu, Lei
    Shi, Xianqing
    Yuen, Muk-Fung
    Zuo, Dunwen
    CERAMICS INTERNATIONAL, 2023, 49 (15) : 25964 - 25979
  • [7] Design high-entropy carbide ceramics from machine learning
    Zhang, Jun
    Xu, Biao
    Xiong, Yaoxu
    Ma, Shihua
    Wang, Zhe
    Wu, Zhenggang
    Zhao, Shijun
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [8] Design high-entropy carbide ceramics from machine learning
    Jun Zhang
    Biao Xu
    Yaoxu Xiong
    Shihua Ma
    Zhe Wang
    Zhenggang Wu
    Shijun Zhao
    npj Computational Materials, 8
  • [9] Machine learning-driven insights into phase prediction for high entropy alloys
    Jain, Reliance
    Jain, Sandeep
    Dewangan, Sheetal Kumar
    Boriwal, Lokesh Kumar
    Samal, Sumanta
    Journal of Alloys and Metallurgical Systems, 2024, 8
  • [10] Recent machine learning-driven investigations into high entropy alloys: A comprehensive review
    Yan, Yonggang
    Hu, Xunxiang
    Liao, Yalin
    Zhou, Yanyao
    He, Wenhao
    Zhou, Ting
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010