Polynomization of the Bessenrodt-Ono Type Inequalities for A-Partition Functions

被引:1
|
作者
Gajdzica, Krystian [1 ]
Heim, Bernhard [2 ,4 ]
Neuhauser, Markus [3 ,4 ]
机构
[1] Jagiellonian Univ, Inst Math, Fac Math & Comp Sci, S Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Univ Cologne, Math Inst, Fac Math & Nat Sci, Weyertal 86-90, D-50931 Cologne, Germany
[3] Kutaisi Int Univ, Youth Ave 5-7, Kutaisi 4600, Georgia
[4] Rhein Westfal TH Aachen, Lehrstuhl A Math, D-52056 Aachen, Germany
关键词
Partition; Restricted partition function; Unrestricted partition function; Polynomization; Bessenrodt-Ono inequality; SERIES; PARTS; PROOF;
D O I
10.1007/s00026-024-00692-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an arbitrary set or multiset A of positive integers, we associate the A-partition function pA (n) (that is the number of partitions of n whose parts belong to A). We also consider the analogue of the k-colored partition function, namely ,pA,-k(n). Further, we define a family of polynomials f(A,n)(x) which satisfy the equality f(A,n)(k)=pA,-k(n)forall n is an element of Z >= 0 and k is an element of N. This paper concerns a polynomialization of the Bessenrodt-Ono inequality, namely f(A,a)(x)f(A,b)(x)>f(A,a+b)(x), where a,b are positive integers. We determine efficient criteria for the solutions of this inequality. Moreover, we also investigate a few basic properties related to both functions f(A,n)(x) and f '(A,n)(x)
引用
收藏
页码:1323 / 1345
页数:23
相关论文
共 50 条
  • [1] On the Bessenrodt-Ono type inequality for a wide class of A-partition functions
    Gajdzica, Krystian
    RAMANUJAN JOURNAL, 2025, 66 (04):
  • [2] Polynomization of the Bessenrodt-Ono Inequality
    Heim, Bernhard
    Neuhauser, Markus
    Troeger, Robert
    ANNALS OF COMBINATORICS, 2020, 24 (04) : 697 - 709
  • [3] Variants of an partition inequality of Bessenrodt-Ono
    Heim, Bernhard
    Neuhauser, Markus
    RESEARCH IN NUMBER THEORY, 2019, 5 (04)
  • [4] Combinatorial Proof of a Partition Inequality of Bessenrodt-Ono
    Alanazi, Abdulaziz A.
    Gagola, Stephen M., III
    Munagi, Augustine O.
    ANNALS OF COMBINATORICS, 2017, 21 (03) : 331 - 337
  • [5] Combinatorial Proof of a Partition Inequality of Bessenrodt-Ono
    Abdulaziz A. Alanazi
    Stephen M. Gagola
    Augustine O. Munagi
    Annals of Combinatorics, 2017, 21 : 331 - 337
  • [6] Polynomization of the Bessenrodt–Ono Inequality
    Bernhard Heim
    Markus Neuhauser
    Robert Tröger
    Annals of Combinatorics, 2020, 24 : 697 - 709
  • [7] On a General Approach to Bessenrodt-Ono Type Inequalities and Log-Concavity Properties
    Gajdzica, Krystian
    Miska, Piotr
    Ulas, Maciej
    ANNALS OF COMBINATORICS, 2024, : 211 - 225
  • [8] Proof of the Bessenrodt-Ono Inequality by Induction
    Heim, Bernhard
    Neuhauser, Markus
    RESEARCH IN NUMBER THEORY, 2022, 8 (01)