Combinatorial Proof of a Partition Inequality of Bessenrodt-Ono

被引:0
|
作者
Abdulaziz A. Alanazi
Stephen M. Gagola
Augustine O. Munagi
机构
[1] Tabuk University,Department of Mathematics, Faculty of Science
[2] University of the Witwatersrand,School of Mathematics
来源
Annals of Combinatorics | 2017年 / 21卷
关键词
partition inequality; -regular partition; multiplicative property; 05A17; 05A20;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a combinatorial proof of the inequality p(a)p(b)>p(a+b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p(a)p(b) > p(a+b)}$$\end{document}, where p(n) is the partition function and a, b>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b > 1}$$\end{document} are integers satisfying a+b>9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a+b > 9}$$\end{document}. This problem was posed by Bessenrodt and Ono who used the inequality to study a new multiplicative property of an extended partition function [Ann. Combin. 20, 59–64 (2016)].
引用
收藏
页码:331 / 337
页数:6
相关论文
共 50 条
  • [1] Combinatorial Proof of a Partition Inequality of Bessenrodt-Ono
    Alanazi, Abdulaziz A.
    Gagola, Stephen M., III
    Munagi, Augustine O.
    ANNALS OF COMBINATORICS, 2017, 21 (03) : 331 - 337
  • [2] Variants of an partition inequality of Bessenrodt-Ono
    Heim, Bernhard
    Neuhauser, Markus
    RESEARCH IN NUMBER THEORY, 2019, 5 (04)
  • [3] Proof of the Bessenrodt-Ono Inequality by Induction
    Heim, Bernhard
    Neuhauser, Markus
    RESEARCH IN NUMBER THEORY, 2022, 8 (01)
  • [5] Polynomization of the Bessenrodt-Ono Inequality
    Heim, Bernhard
    Neuhauser, Markus
    Troeger, Robert
    ANNALS OF COMBINATORICS, 2020, 24 (04) : 697 - 709
  • [6] On the Bessenrodt-Ono type inequality for a wide class of A-partition functions
    Gajdzica, Krystian
    RAMANUJAN JOURNAL, 2025, 66 (04):
  • [7] Polynomization of the Bessenrodt-Ono Type Inequalities for A-Partition Functions
    Gajdzica, Krystian
    Heim, Bernhard
    Neuhauser, Markus
    ANNALS OF COMBINATORICS, 2024, 28 (04) : 1323 - 1345
  • [8] Variants of an partition inequality of Bessenrodt–Ono
    Bernhard Heim
    Markus Neuhauser
    Research in Number Theory, 2019, 5
  • [9] Proof of the Bessenrodt–Ono Inequality by Induction
    Bernhard Heim
    Markus Neuhauser
    Research in Number Theory, 2022, 8