Anomaly detection based on a deep graph convolutional neural network for reliability improvement

被引:0
|
作者
Xu, Gang [1 ]
Hu, Jie [1 ]
Qie, Xin [1 ]
Rong, Jingguo [2 ]
机构
[1] North China Elect Power Univ, Sch Elect & Elect Engn, Beijing, Peoples R China
[2] State Grid Econ & Technol Res Inst Co Ltd, Beijing, Peoples R China
关键词
reliability improvement; graph convolutional network; anomaly detection; skip connection mechanism; artificial intelligence;
D O I
10.3389/fenrg.2024.1345361
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Effective anomaly detection in power grid engineering is essential for ensuring the reliability of dispatch and operation. Traditional anomaly detection methods based on manual review and expert experience cannot be adapted to the current rapid increases in project data. In this work, to address this issue, knowledge graph technology is used to build an anomaly detection dataset. Considering the over-smoothing problem associated with multi-level GCN networks, a deep skip connection framework for anomaly detection on attributed networks called DIET is proposed for anomaly detection on ultra-high voltage (UHV) projects. Furthermore, a distance-based object function is added to the conventional object function, which gives DIET the ability to process multiple attributes of the same type. Several comparative experiments are conducted using five state-of-the-art algorithms. The results of the receiver operating characteristic with the area under the curve (ROC-AUC) indicator show a 12% minimum improvement over other methods. Other evaluation indicators such as precision@K and recall@K indicate that DIET can achieve a better detection rate with less ranking. To evaluate the feasibility of the proposed model, a parameter analysis of the number of GCN layers is also performed. The results show that relatively few layers are needed to achieve good results with small datasets.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Device Performance Anomaly Detection Method Based on Graph Convolutional Neural Network
    Liu, Aolun
    Yang, Yang
    Guo, Yanpeng
    Gao, Zhipeng
    Rui, Lanlan
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL II, CENET 2023, 2024, 1126 : 230 - 239
  • [2] BSDG: Anomaly Detection of Microservice Trace Based on Dual Graph Convolutional Neural Network
    Shi, Kuanzhi
    Li, Jing
    Liu, Yuecan
    Chang, Yuzhu
    Li, Xuyang
    SERVICE-ORIENTED COMPUTING (ICSOC 2022), 2022, 13740 : 171 - 185
  • [3] EvAnGCN: Evolving Graph Deep Neural Network Based Anomaly Detection in Blockchain
    Patel, Vatsal
    Rajasegarar, Sutharshan
    Pan, Lei
    Liu, Jiajun
    Zhu, Liming
    ADVANCED DATA MINING AND APPLICATIONS (ADMA 2022), PT I, 2022, 13725 : 444 - 456
  • [4] Anomaly detection with convolutional Graph Neural Networks
    Atkinson, Oliver
    Bhardwaj, Akanksha
    Englert, Christoph
    Ngairangbam, Vishal S.
    Spannowsky, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
  • [5] Anomaly detection with convolutional Graph Neural Networks
    Oliver Atkinson
    Akanksha Bhardwaj
    Christoph Englert
    Vishal S. Ngairangbam
    Michael Spannowsky
    Journal of High Energy Physics, 2021
  • [6] Anomaly Detection for Schizophrenia on Functional Connectivity Using Graph Convolutional Neural Network
    Su, Jianpo
    Sun, Zhongyi
    Peng, Limin
    Gao, Kai
    Zeng, Ling-Li
    Hu, Dewen
    BIOLOGICAL PSYCHIATRY, 2022, 91 (09) : S161 - S162
  • [7] A Spectrogram Image-Based Network Anomaly Detection System Using Deep Convolutional Neural Network
    Khan, Adnan Shahid
    Ahmad, Zeeshan
    Abdullah, Johari
    Ahmad, Farhan
    IEEE ACCESS, 2021, 9 : 87079 - 87093
  • [8] Network anomaly detection using channel boosted and residual learning based deep convolutional neural network
    Chouhan, Naveed
    Khan, Asifullah
    Khan, Haroon-ur-Rasheed
    APPLIED SOFT COMPUTING, 2019, 83
  • [9] Network Anomaly Detection With Convolutional Neural Network Based Auto Encoders
    Kiziltas, Behlul
    Gul, Ensar
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [10] Local and Deep Features Based Convolutional Neural Network Frameworks for Brain MRI Anomaly Detection
    Einy, Sajad
    Saygin, Hasan
    Hivehch, Hemrah
    Navaei, Yahya Dorostkar
    COMPLEXITY, 2022, 2022