Anomaly detection based on a deep graph convolutional neural network for reliability improvement

被引:0
|
作者
Xu, Gang [1 ]
Hu, Jie [1 ]
Qie, Xin [1 ]
Rong, Jingguo [2 ]
机构
[1] North China Elect Power Univ, Sch Elect & Elect Engn, Beijing, Peoples R China
[2] State Grid Econ & Technol Res Inst Co Ltd, Beijing, Peoples R China
关键词
reliability improvement; graph convolutional network; anomaly detection; skip connection mechanism; artificial intelligence;
D O I
10.3389/fenrg.2024.1345361
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Effective anomaly detection in power grid engineering is essential for ensuring the reliability of dispatch and operation. Traditional anomaly detection methods based on manual review and expert experience cannot be adapted to the current rapid increases in project data. In this work, to address this issue, knowledge graph technology is used to build an anomaly detection dataset. Considering the over-smoothing problem associated with multi-level GCN networks, a deep skip connection framework for anomaly detection on attributed networks called DIET is proposed for anomaly detection on ultra-high voltage (UHV) projects. Furthermore, a distance-based object function is added to the conventional object function, which gives DIET the ability to process multiple attributes of the same type. Several comparative experiments are conducted using five state-of-the-art algorithms. The results of the receiver operating characteristic with the area under the curve (ROC-AUC) indicator show a 12% minimum improvement over other methods. Other evaluation indicators such as precision@K and recall@K indicate that DIET can achieve a better detection rate with less ranking. To evaluate the feasibility of the proposed model, a parameter analysis of the number of GCN layers is also performed. The results show that relatively few layers are needed to achieve good results with small datasets.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Automated glaucoma detection based on deep convolutional neural network
    Ko, Yu-Chieh
    Wey, Shin-Yu
    Lee, Chen-Yi
    Liu, Catherine Jui-Ling
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [42] A Deep Convolutional Neural Network Based Framework for Pneumonia Detection
    Jamil, Sonain
    Abbas, Muhammad Sohail
    Fawad
    Zia, Muhammad Faisal
    Rahman, Muhib Ur
    2021 INTERNATIONAL CONFERENCE ON DIGITAL FUTURES AND TRANSFORMATIVE TECHNOLOGIES (ICODT2), 2021,
  • [43] DETECTION OF CEREBRAL MICROBLEEDING BASED ON DEEP CONVOLUTIONAL NEURAL NETWORK
    Lu, Siyuan
    Lu, Zhihai
    Hou, Xiaoxia
    Cheng, Hong
    Wang, Shuihua
    2017 14TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2017, : 93 - 96
  • [44] Intrusion detection method based on a deep convolutional neural network
    Zhang S.
    Xie X.
    Xu Y.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2019, 59 (01): : 44 - 52
  • [45] CATARACT DETECTION AND GRADING BASED ON DEEP CONVOLUTIONAL NEURAL NETWORK
    Zhang, Hongyan
    Niu, Kai
    Xiong, Yanmin
    Yang, Weihua
    He, Zhiqiang
    Song, Hongxin
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [46] Calligraphy Character Detection Based on Deep Convolutional Neural Network
    Peng, Xianlin
    Kang, Jian
    Wu, Yinjie
    Feng, Xiaoyi
    APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [47] Vulnerability Detection Based on Deep Graph Convolutional Network and Attention Mechanism
    Xiao, Peng
    Zhang, Xusheng
    Yang, Fengyu
    Zheng, Wei
    Computer Engineering and Applications, 1600, 3 (292-305):
  • [48] A Deep-Convolutional-Neural-Network-Based Semi-Supervised Learning Method for Anomaly Crack Detection
    Gao, Xingjun
    Huang, Chuansheng
    Teng, Shuai
    Chen, Gongfa
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [49] Adversarial random graph neural network for anomaly detection
    Tuzen, Ahmet
    Yaslan, Yusuf
    DIGITAL SIGNAL PROCESSING, 2024, 146
  • [50] A hyperspectral anomaly detection framework based on segmentation and convolutional neural network algorithms
    Hosseiny, Benyamin
    Shah-Hosseini, Reza
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (18) : 6946 - 6975