Anomaly detection based on a deep graph convolutional neural network for reliability improvement

被引:0
|
作者
Xu, Gang [1 ]
Hu, Jie [1 ]
Qie, Xin [1 ]
Rong, Jingguo [2 ]
机构
[1] North China Elect Power Univ, Sch Elect & Elect Engn, Beijing, Peoples R China
[2] State Grid Econ & Technol Res Inst Co Ltd, Beijing, Peoples R China
关键词
reliability improvement; graph convolutional network; anomaly detection; skip connection mechanism; artificial intelligence;
D O I
10.3389/fenrg.2024.1345361
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Effective anomaly detection in power grid engineering is essential for ensuring the reliability of dispatch and operation. Traditional anomaly detection methods based on manual review and expert experience cannot be adapted to the current rapid increases in project data. In this work, to address this issue, knowledge graph technology is used to build an anomaly detection dataset. Considering the over-smoothing problem associated with multi-level GCN networks, a deep skip connection framework for anomaly detection on attributed networks called DIET is proposed for anomaly detection on ultra-high voltage (UHV) projects. Furthermore, a distance-based object function is added to the conventional object function, which gives DIET the ability to process multiple attributes of the same type. Several comparative experiments are conducted using five state-of-the-art algorithms. The results of the receiver operating characteristic with the area under the curve (ROC-AUC) indicator show a 12% minimum improvement over other methods. Other evaluation indicators such as precision@K and recall@K indicate that DIET can achieve a better detection rate with less ranking. To evaluate the feasibility of the proposed model, a parameter analysis of the number of GCN layers is also performed. The results show that relatively few layers are needed to achieve good results with small datasets.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Community detection based on BernNet graph convolutional neural network
    Xie, Hui
    Ning, Yixin
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2023, 83 (05) : 386 - 395
  • [22] A Hierarchical Spatio-Temporal Graph Convolutional Neural Network for Anomaly Detection in Videos
    Zeng, Xianlin
    Jiang, Yalong
    Ding, Wenrui
    Li, Hongguang
    Hao, Yafeng
    Qiu, Zifeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (01) : 200 - 212
  • [23] A Convolutional Neural Network for Improved Anomaly-Based Network Intrusion Detection
    Al-Turaiki, Isra
    Altwaijry, Najwa
    BIG DATA, 2021, 9 (03) : 233 - 252
  • [24] Network Anomaly Detection Using a Graph Neural Network
    Kisanga, Patrice
    Woungang, Isaac
    Traore, Issa
    Carvalho, Glaucio H. S.
    2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2023, : 61 - 65
  • [25] A deep graph convolutional neural network architecture for graph classification
    Zhou, Yuchen
    Huo, Hongtao
    Hou, Zhiwen
    Bu, Fanliang
    PLOS ONE, 2023, 18 (03):
  • [26] A deep graph convolutional neural network architecture for graph classification
    Zhou, Yuchen
    Huo, Hongtao
    Hou, Zhiwen
    Bu, Fanliang
    PLOS BIOLOGY, 2023, 21 (03)
  • [27] Graph neural network approach for anomaly detection
    Xie, Lingqiang
    Pi, Dechang
    Zhang, Xiangyan
    Chen, Junfu
    Luo, Yi
    Yu, Wen
    MEASUREMENT, 2021, 180
  • [28] Anomaly detection of hydro-turbine based on audio feature extraction of deep convolutional neural network
    He, Shengming
    Wang, Zhaocheng
    Liao, Bo
    Zeng, Jie
    Liu, Haorui
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2023, 73 (03) : 192 - 202
  • [29] Network Flow Based IoT Anomaly Detection Using Graph Neural Network
    Wei, Chongbo
    Xie, Gaogang
    Diao, Zulong
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2023, 2023, 14118 : 432 - 445
  • [30] A deep neural network based method for magnetic anomaly detection
    Wang, Yizhen
    Han, Qi
    Zhao, Guanyi
    Li, Minghui
    Zhan, Dechen
    Li, Qiong
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2022, 16 (01) : 50 - 58