EvAnGCN: Evolving Graph Deep Neural Network Based Anomaly Detection in Blockchain

被引:5
|
作者
Patel, Vatsal [1 ]
Rajasegarar, Sutharshan [1 ]
Pan, Lei [1 ]
Liu, Jiajun [2 ]
Zhu, Liming [3 ]
机构
[1] Deakin Univ, Sch IT, Geelong, Vic, Australia
[2] CSIRO Data61, Pullenvale, Qld, Australia
[3] CSIRO Data61, Eveleigh, NSW, Australia
关键词
Anomaly detection; Blockchain transaction data; Evolving graph convolutional network; Dynamic graph convolutional network;
D O I
10.1007/978-3-031-22064-7_32
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Detecting anomalous behaviors in the blockchain is important for maintaining its integrity. An imminent challenge is to capture the evolving model of transactions in the network. Representing the network with a dynamic graph helps model the system's time-evolving nature. However, as the graph evolves, real-world scenarios further stimulate the development of Graph Neural Networks (GNNs) to handle dynamic graph structures. In this paper, we propose a novel dynamic Graph Convolutional Network framework, namely EvAnGCN (Evolving Anomaly detection GCN), that helps detect anomalous behaviors in the blockchain. EvAnGCN exploits the time-based neighborhood feature aggregation of transactional features and the dynamic structure of the transaction network to detect anomalous nodes within the network. We conducted experiments on the Ethereum blockchain transaction dataset. Our experimental results demonstrate that EvAnGCH outperformed the baseline models.
引用
收藏
页码:444 / 456
页数:13
相关论文
共 50 条
  • [1] Graph Deep Learning Based Anomaly Detection in Ethereum Blockchain Network
    Patel, Vatsal
    Pan, Lei
    Rajasegarar, Sutharshan
    NETWORK AND SYSTEM SECURITY, NSS 2020, 2020, 12570 : 132 - 148
  • [2] Anomaly detection based on a deep graph convolutional neural network for reliability improvement
    Xu, Gang
    Hu, Jie
    Qie, Xin
    Rong, Jingguo
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [3] Anomaly detection of traffic session based on graph neural network
    Du Peng
    Peng Cheng-Wei
    Xiang Peng
    Li Qing-Shan
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON CYBER SECURITY, CSW 2022, 2022, : 1 - 9
  • [4] Graph Neural Network Based Anomaly Detection in Dynamic Networks
    Guo J.-Y.
    Li R.-H.
    Zhang Y.
    Wang G.-R.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (03): : 748 - 762
  • [5] Marrying Graph Kernel with Deep Neural Network: A Case Study for Network Anomaly Detection
    Yao, Yepeng
    Su, Liya
    Zhang, Chen
    Lu, Zhigang
    Liu, Baoxu
    COMPUTATIONAL SCIENCE - ICCS 2019, PT II, 2019, 11537 : 102 - 115
  • [6] Network Anomaly Detection Using a Graph Neural Network
    Kisanga, Patrice
    Woungang, Isaac
    Traore, Issa
    Carvalho, Glaucio H. S.
    2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2023, : 61 - 65
  • [7] Graph neural network approach for anomaly detection
    Xie, Lingqiang
    Pi, Dechang
    Zhang, Xiangyan
    Chen, Junfu
    Luo, Yi
    Yu, Wen
    MEASUREMENT, 2021, 180
  • [8] Anomaly detection in Internet of medical Things with Blockchain from the perspective of deep neural network
    Wang, Jun
    Jin, Hanlei
    Chen, Junxiao
    Tan, Jinghua
    Zhong, Kaiyang
    INFORMATION SCIENCES, 2022, 617 : 133 - 149
  • [9] Network Flow Based IoT Anomaly Detection Using Graph Neural Network
    Wei, Chongbo
    Xie, Gaogang
    Diao, Zulong
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2023, 2023, 14118 : 432 - 445
  • [10] A deep neural network based method for magnetic anomaly detection
    Wang, Yizhen
    Han, Qi
    Zhao, Guanyi
    Li, Minghui
    Zhan, Dechen
    Li, Qiong
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2022, 16 (01) : 50 - 58