Anomaly detection with convolutional Graph Neural Networks

被引:0
|
作者
Oliver Atkinson
Akanksha Bhardwaj
Christoph Englert
Vishal S. Ngairangbam
Michael Spannowsky
机构
[1] University of Glasgow,School of Physics & Astronomy
[2] Theoretical Physics Division,Discipline of Physics
[3] Physical Research Laboratory,Institute for Particle Physics Phenomenology
[4] Indian Institute of Technology,Department of Physics
[5] Durham University,undefined
[6] Durham University,undefined
关键词
Jets;
D O I
暂无
中图分类号
学科分类号
摘要
We devise an autoencoder based strategy to facilitate anomaly detection for boosted jets, employing Graph Neural Networks (GNNs) to do so. To overcome known limitations of GNN autoencoders, we design a symmetric decoder capable of simultaneously reconstructing edge features and node features. Focusing on latent space based discriminators, we find that such setups provide a promising avenue to isolate new physics and competing SM signatures from sensitivity-limiting QCD jet contributions. We demonstrate the flexibility and broad applicability of this approach using examples of W bosons, top quarks, and exotic hadronically-decaying exotic scalar bosons.
引用
收藏
相关论文
共 50 条
  • [1] Anomaly detection with convolutional Graph Neural Networks
    Atkinson, Oliver
    Bhardwaj, Akanksha
    Englert, Christoph
    Ngairangbam, Vishal S.
    Spannowsky, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
  • [2] Graph Anomaly Detection with Graph Convolutional Networks
    Mir, Aabid A.
    Zuhairi, Megat F.
    Musa, Shahrulniza
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (11) : 601 - 613
  • [3] Graph fairing convolutional networks for anomaly detection
    Mesgaran, Mahsa
    Ben Hamza, A.
    PATTERN RECOGNITION, 2024, 145
  • [4] Graph Convolutional Adversarial Networks for Spatiotemporal Anomaly Detection
    Deng, Leyan
    Lian, Defu
    Huang, Zhenya
    Chen, Enhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2416 - 2428
  • [5] Rethinking Graph Neural Networks for Anomaly Detection
    Tang, Jianheng
    Li, Jiajin
    Gao, Ziqi
    Li, Jia
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [6] Workflow Anomaly Detection with Graph Neural Networks
    Jin, Hongwei
    Raghavan, Krishnan
    Papadimitriou, George
    Wang, Cong
    Mandal, Anirban
    Krawczuk, Patrycja
    Pottier, Loic
    Kiran, Mariam
    Deelman, Ewa
    Balaprakash, Prasanna
    2022 IEEE/ACM WORKSHOP ON WORKFLOWS IN SUPPORT OF LARGE-SCALE SCIENCE, WORKS, 2022, : 35 - 42
  • [7] Anomaly Detection with Graph Convolutional Networks for Insider Threat and Fraud Detection
    Jiang, Jianguo
    Chen, Jiuming
    Gu, Tianbo
    Choo, Kim-Kwang Raymond
    Liu, Chao
    Yu, Min
    Huang, Weiqing
    Mohapatra, Prasant
    MILCOM 2019 - 2019 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2019,
  • [8] Evaluation of Anomaly Detection for Cybersecurity Using Inductive Node Embedding with Convolutional Graph Neural Networks
    Abou Rida, Amani
    Amhaz, Rabih
    Parrend, Pierre
    COMPLEX NETWORKS & THEIR APPLICATIONS X, VOL 2, 2022, 1016 : 563 - 574
  • [9] Unsupervised Hyperspectral Anomaly Detection with Convolutional Neural Networks
    Yilmaz, Fatma Nur
    Arisoy, Sertac
    Kayabol, Koray
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [10] Anomaly Detection in In-Vehicle Networks with Graph Neural Networks
    Ozdemir, Övgü
    Karagoz, Pinar
    Schmidt, Klaus Werner
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,