Ultra-Fast Approximate Inference Using Variational Functional Mixed Models

被引:1
|
作者
Huo, Shuning [1 ]
Morris, Jeffrey S. [2 ]
Zhu, Hongxiao [1 ]
机构
[1] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA
[2] Univ Penn, Dept Stat, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Approximate Bayesian inference; Distributed inference; Functional data analysis; Parallel computing; Variational Bayes; QUANTITATIVE IMAGE DATA; MASS-SPECTROMETRY; DATA REGISTRATION; REGRESSION; ROBUST; BAYES; SPIKE;
D O I
10.1080/10618600.2022.2107532
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
While Bayesian functional mixed models have been shown effective to model functional data with various complex structures, their application to extremely high-dimensional data is limited due to computational challenges involved in posterior sampling. We introduce a new computational framework that enables ultra-fast approximate inference for high-dimensional data in functional form. This framework adopts parsimonious basis to represent functional observations, which facilitates efficient compression and parallel computing in basis space. Instead of performing expensive Markov chain Monte Carlo sampling, we approximate the posterior distribution using variational Bayes and adopt a fast iterative algorithm to estimate parameters of the approximate distribution. Our approach facilitates a fast multiple testing procedure in basis space, which can be used to identify significant local regions that reflect differences across groups of samples. We perform two simulation studies to assess the performance of approximate inference, and demonstrate applications of the proposed approach by using a proteomic mass spectrometry dataset and a brain imaging dataset. for this article are available online.
引用
收藏
页码:353 / 365
页数:13
相关论文
共 50 条
  • [1] Gaussian Variational Approximate Inference for Generalized Linear Mixed Models
    Ormerod, J. T.
    Wand, M. P.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (01) : 2 - 17
  • [2] A comparison of variational approximations for fast inference in mixed logit models
    Nicolas Depraetere
    Martina Vandebroek
    Computational Statistics, 2017, 32 : 93 - 125
  • [3] A comparison of variational approximations for fast inference in mixed logit models
    Depraetere, Nicolas
    Vandebroek, Martina
    COMPUTATIONAL STATISTICS, 2017, 32 (01) : 93 - 125
  • [4] Fast variational inference for joint mixed sparse graphical models
    Liu Q.
    Zhang Y.
    IEEE Journal on Selected Areas in Information Theory, 2020, 1 (03): : 908 - 913
  • [5] APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS
    BRESLOW, NE
    CLAYTON, DG
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) : 9 - 25
  • [6] Variational Inference in Mixed Probabilistic Submodular Models
    Djolonga, Josip
    Tschiatschek, Sebastian
    Krause, Andreas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [7] EGAD: ultra-fast functional analysis of gene networks
    Ballouz, Sara
    Weber, Melanie
    Pavlidis, Paul
    Gillis, Jesse
    BIOINFORMATICS, 2017, 33 (04) : 612 - 614
  • [8] Consistent and fast inference in compartmental models of epidemics using Poisson Approximate Likelihoods
    Whitehouse, Michael
    Whiteley, Nick
    Rimella, Lorenzo
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (04) : 1173 - 1203
  • [9] Variational Inference for Generalized Linear Mixed Models Using Partially Noncentered Parametrizations
    Tan, Linda S. L. y
    Nott, David J.
    STATISTICAL SCIENCE, 2013, 28 (02) : 168 - 188
  • [10] EXPERIMENTS USING ULTRA-FAST PULSE TECHNIQUES
    GOLDRING, G
    NUCLEAR INSTRUMENTS & METHODS, 1961, 11 (01): : 29 - 38