Ultra-Fast Approximate Inference Using Variational Functional Mixed Models

被引:1
|
作者
Huo, Shuning [1 ]
Morris, Jeffrey S. [2 ]
Zhu, Hongxiao [1 ]
机构
[1] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA
[2] Univ Penn, Dept Stat, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Approximate Bayesian inference; Distributed inference; Functional data analysis; Parallel computing; Variational Bayes; QUANTITATIVE IMAGE DATA; MASS-SPECTROMETRY; DATA REGISTRATION; REGRESSION; ROBUST; BAYES; SPIKE;
D O I
10.1080/10618600.2022.2107532
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
While Bayesian functional mixed models have been shown effective to model functional data with various complex structures, their application to extremely high-dimensional data is limited due to computational challenges involved in posterior sampling. We introduce a new computational framework that enables ultra-fast approximate inference for high-dimensional data in functional form. This framework adopts parsimonious basis to represent functional observations, which facilitates efficient compression and parallel computing in basis space. Instead of performing expensive Markov chain Monte Carlo sampling, we approximate the posterior distribution using variational Bayes and adopt a fast iterative algorithm to estimate parameters of the approximate distribution. Our approach facilitates a fast multiple testing procedure in basis space, which can be used to identify significant local regions that reflect differences across groups of samples. We perform two simulation studies to assess the performance of approximate inference, and demonstrate applications of the proposed approach by using a proteomic mass spectrometry dataset and a brain imaging dataset. for this article are available online.
引用
收藏
页码:353 / 365
页数:13
相关论文
共 50 条
  • [21] An Ultra-fast Method for Analyzing IPM Motors at Multiple Operating Points Using Surrogate Models
    Praslicka, Bryton
    Taran, Narges
    Ma, Cong
    2022 IEEE/AIAA TRANSPORTATION ELECTRIFICATION CONFERENCE AND ELECTRIC AIRCRAFT TECHNOLOGIES SYMPOSIUM (ITEC+EATS 2022), 2022, : 868 - 873
  • [22] Gaussian variational approximate inference for joint models of longitudinal biomarkers and a survival outcome
    Tu, Jieqi
    Sun, Jiehuan
    STATISTICS IN MEDICINE, 2023, 42 (03) : 316 - 330
  • [23] Mean-field variational approximate Bayesian inference for latent variable models
    Consonni, Guido
    Marin, Jean-Michel
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (02) : 790 - 798
  • [24] Ultra-Fast Variability-Aware Optimization of Mixed-Signal Designs using Bootstrapped Kriging
    Mohanty, Saraju P.
    Kougianos, Elias
    Yanambaka, Venkata P.
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED 2015), 2015, : 239 - 242
  • [25] Fast and Accurate Estimation of Non-Nested Binomial Hierarchical Models Using Variational Inference
    Goplerud, Max
    BAYESIAN ANALYSIS, 2022, 17 (02): : 623 - 650
  • [26] Optimizing the Complex Systems Reliability Using Mixed Strategy in Ultra-fast Gas Turbine Protection System
    Ahmed, Alim Al Ayub
    Huy, Dinh Tran Ngoc
    Trung, Nguyen Dinh
    Alghazali, Tawfeeq
    Alattabi, Abdulhussien N.
    Majdi, Hasan Sh.
    Lattieff, Farkad A.
    Iskandar, Ahmad Syarief
    Nurrohkayati, Anis Siti
    INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2022, 21 (03): : 449 - 459
  • [27] Approximate conditional inference in mixed-effects models with binary data
    Lee, Woojoo
    Shi, Jian Qing
    Lee, Youngjo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (01) : 173 - 184
  • [28] Ultra-fast isothermal calorimetry using thin film sensors
    Adamovsky, S
    Schick, C
    THERMOCHIMICA ACTA, 2004, 415 (1-2) : 1 - 7
  • [29] New laser marking technology using ultra-fast lasers
    Gu, B
    Photon Processing in Microelectronics and Photonics IV, 2005, 5713 : 132 - 136
  • [30] Ultra-fast stem cell labelling using cationised magnetoferritin
    Carreira, S. Correia
    Armstrong, J. P. K.
    Seddon, A. M.
    Perriman, A. W.
    Hartley-Davies, R.
    Schwarzacher, W.
    NANOSCALE, 2016, 8 (14) : 7474 - 7483