Ultra-Fast Approximate Inference Using Variational Functional Mixed Models

被引:1
|
作者
Huo, Shuning [1 ]
Morris, Jeffrey S. [2 ]
Zhu, Hongxiao [1 ]
机构
[1] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA
[2] Univ Penn, Dept Stat, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Approximate Bayesian inference; Distributed inference; Functional data analysis; Parallel computing; Variational Bayes; QUANTITATIVE IMAGE DATA; MASS-SPECTROMETRY; DATA REGISTRATION; REGRESSION; ROBUST; BAYES; SPIKE;
D O I
10.1080/10618600.2022.2107532
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
While Bayesian functional mixed models have been shown effective to model functional data with various complex structures, their application to extremely high-dimensional data is limited due to computational challenges involved in posterior sampling. We introduce a new computational framework that enables ultra-fast approximate inference for high-dimensional data in functional form. This framework adopts parsimonious basis to represent functional observations, which facilitates efficient compression and parallel computing in basis space. Instead of performing expensive Markov chain Monte Carlo sampling, we approximate the posterior distribution using variational Bayes and adopt a fast iterative algorithm to estimate parameters of the approximate distribution. Our approach facilitates a fast multiple testing procedure in basis space, which can be used to identify significant local regions that reflect differences across groups of samples. We perform two simulation studies to assess the performance of approximate inference, and demonstrate applications of the proposed approach by using a proteomic mass spectrometry dataset and a brain imaging dataset. for this article are available online.
引用
收藏
页码:353 / 365
页数:13
相关论文
共 50 条
  • [31] Meat freshness classification using ultra-fast gas chromatography
    Wojnowski, Wojciech
    Majchrzak, Tomasz
    Dymerski, Tomasz
    Namiesnik, Jacek
    PROCEEDINGS OF THE 12TH INTERNATIONAL STUDENTS CONFERENCE MODERN ANALYTICAL CHEMISTRY, 2016, : 118 - 121
  • [32] Natural gradient hybrid variational inference with application to deep mixed models
    Zhang, Weiben
    Smith, Michael
    Maneesoonthorn, Worapree
    Loaiza-Maya, Ruben
    STATISTICS AND COMPUTING, 2024, 34 (06)
  • [33] Ultra-fast analog ensemble using kd-tree
    Yang, Dazhi
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2019, 11 (05)
  • [34] Ultra-fast transient plasmonics using transparent conductive oxides
    Ferrera, Marcello
    Carnemolla, Enrico G.
    JOURNAL OF OPTICS, 2018, 20 (02)
  • [35] Streamlined Variational Inference for Linear Mixed Models with Crossed Random Effects
    Menictas, Marianne
    Di Credico, Gioia
    Wand, Matt P.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (01) : 99 - 115
  • [36] ULTRA-FAST IMAGING USING LOW FLIP ANGLES AND FIDS
    MADIO, DP
    LOWE, IJ
    MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) : 525 - 529
  • [37] Searching for ultra-fast outflows in AGN using variability spectra
    Igo, Z.
    Parker, M. L.
    Matzeu, G. A.
    Alston, W.
    Crespo, N. Alvarez
    Buisson, D. J. K.
    Lobban, A.
    Furst, F.
    Joyce, A. M.
    Mallick, L.
    Schartel, N.
    Santos-Lleo, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (01) : 1088 - 1108
  • [38] Variational Bayesian Inference in High-Dimensional Linear Mixed Models
    Yi, Jieyi
    Tang, Niansheng
    MATHEMATICS, 2022, 10 (03)
  • [39] Ultra-Fast Optical Switching Using Differential Control Method
    Lino, Kohei
    Kita, Tomohiro
    2022 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2022,
  • [40] CompAIRR: ultra-fast comparison of adaptive immune receptor repertoires by exact and approximate sequence matching
    Rognes, Torbjorn
    Scheffer, Lonneke
    Greiff, Victor
    Sandve, Geir Kjetil
    BIOINFORMATICS, 2022, 38 (17) : 4230 - 4232