Ultra-Fast Approximate Inference Using Variational Functional Mixed Models

被引:1
|
作者
Huo, Shuning [1 ]
Morris, Jeffrey S. [2 ]
Zhu, Hongxiao [1 ]
机构
[1] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA
[2] Univ Penn, Dept Stat, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Approximate Bayesian inference; Distributed inference; Functional data analysis; Parallel computing; Variational Bayes; QUANTITATIVE IMAGE DATA; MASS-SPECTROMETRY; DATA REGISTRATION; REGRESSION; ROBUST; BAYES; SPIKE;
D O I
10.1080/10618600.2022.2107532
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
While Bayesian functional mixed models have been shown effective to model functional data with various complex structures, their application to extremely high-dimensional data is limited due to computational challenges involved in posterior sampling. We introduce a new computational framework that enables ultra-fast approximate inference for high-dimensional data in functional form. This framework adopts parsimonious basis to represent functional observations, which facilitates efficient compression and parallel computing in basis space. Instead of performing expensive Markov chain Monte Carlo sampling, we approximate the posterior distribution using variational Bayes and adopt a fast iterative algorithm to estimate parameters of the approximate distribution. Our approach facilitates a fast multiple testing procedure in basis space, which can be used to identify significant local regions that reflect differences across groups of samples. We perform two simulation studies to assess the performance of approximate inference, and demonstrate applications of the proposed approach by using a proteomic mass spectrometry dataset and a brain imaging dataset. for this article are available online.
引用
收藏
页码:353 / 365
页数:13
相关论文
共 50 条
  • [41] Estimation and inference in functional mixed-effects models
    Antoniadis, Anestis
    Sapatinas, Theofanis
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (10) : 4793 - 4813
  • [42] Ultra-Fast Machine Learning Inference through C Code Generation for Tangled Program Graphs
    Desnos, Karol
    Bourgoin, Thomas
    Dardaillon, Mickael
    Sourbier, Nicolas
    Gesny, Olivier
    Pelcat, Maxime
    2022 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2022, : 31 - 36
  • [43] SBI++: Flexible, Ultra-fast Likelihood-free Inference Customized for Astronomical Applications
    Wang, Bingjie
    Leja, Joel
    Villar, V. Ashley
    Speagle, Joshua S.
    ASTROPHYSICAL JOURNAL LETTERS, 2023, 952 (01)
  • [44] Bayesian K-SVD Using Fast Variational Inference
    Serra, Juan G.
    Testa, Matteo
    Molina, Rafael
    Katsaggelos, Aggelos K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) : 3344 - 3359
  • [45] Fast inference for robust nonlinear mixed-effects models
    Barros Gomes, Jose Clelto
    Aoki, Reiko
    Lachos, Victor Hugo
    Paula, Gilberto Alvarenga
    Russo, Cibele Maria
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (07) : 1568 - 1591
  • [46] Solvent effect on ultra-fast electron transfer in mixed-valence biferrocene monocation
    Masuda, A.
    Masuda, Y.
    Fukuda, Y.
    Journal of Molecular Liquids, 1995, 65-66
  • [47] Learning the Dynamics of Bursty Transcription and Splicing using Ultra-Fast Parameter Inference and New Analytical Solutions of the Chemical Master Equation
    Vastola, John J.
    Gorin, Gennady
    Pachter, Lior
    Holmes, William R.
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 135A - 135A
  • [48] Fast variational inference for Gaussian process models through KL-correction
    King, Nathaniel J.
    Lawrence, Neil D.
    MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 270 - 281
  • [49] Approximate composite marginal likelihood inference in spatial generalized linear mixed models
    Hosseini, Fatemeh
    Karimi, Omid
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (03) : 542 - 558
  • [50] Ultra-fast and automated immunohistofluorescent multistaining using a microfluidic tissue processor
    Cappi, G.
    Dupouy, D. G.
    Comino, M. A.
    Ciftlik, A. T.
    VIRCHOWS ARCHIV, 2019, 475 : S17 - S17