Gaussian Variational Approximate Inference for Generalized Linear Mixed Models

被引:54
|
作者
Ormerod, J. T. [1 ]
Wand, M. P. [2 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ Technol Sydney, Sch Math Sci, Sydney, NSW 2007, Australia
基金
澳大利亚研究理事会;
关键词
Best prediction; Likelihood-based inference; Longitudinal data analysis; Machine learning; Variance components; MAXIMUM-LIKELIHOOD;
D O I
10.1198/jcgs.2011.09118
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Variational approximation methods have become a mainstay of contemporary machine learning methodology, but currently have little presence in statistics. We devise an effective variational approximation strategy for fitting generalized linear mixed models (GLMMs) appropriate for grouped data. It involves Gaussian approximation to the distributions of random effects vectors, conditional on the responses. We show that Gaussian variational approximation is a relatively simple and natural alternative to Laplace approximation for fast, non-Monte Carlo, GLMM analysis. Numerical studies show Gaussian variational approximation to be very accurate in grouped data GLMM contexts. Finally, we point to some recent theory on consistency of Gaussian variational approximation in this context. Supplemental materials are available online.
引用
收藏
页码:2 / 17
页数:16
相关论文
共 50 条
  • [1] APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS
    BRESLOW, NE
    CLAYTON, DG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) : 9 - 25
  • [2] Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models
    Eidsvik, Jo
    Martino, Sara
    Rue, Havard
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (01) : 1 - 22
  • [3] Variational Inference of Finite Generalized Gaussian Mixture Models
    Amudala, Srikanth
    Ali, Samr
    Najar, Fatma
    Bouguila, Nizar
    [J]. 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2433 - 2439
  • [4] Sparse Variational Inference for Generalized Gaussian Process Models
    Sheth, Rishit
    Wang, Yuyang
    Khardon, Roni
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1302 - 1311
  • [5] Approximate composite marginal likelihood inference in spatial generalized linear mixed models
    Hosseini, Fatemeh
    Karimi, Omid
    [J]. JOURNAL OF APPLIED STATISTICS, 2019, 46 (03) : 542 - 558
  • [6] Variational Inference for Generalized Linear Mixed Models Using Partially Noncentered Parametrizations
    Tan, Linda S. L. y
    Nott, David J.
    [J]. STATISTICAL SCIENCE, 2013, 28 (02) : 168 - 188
  • [7] Generalized linear mixed models with Gaussian mixture random effects: Inference and application
    Pan, Lanfeng
    Li, Yehua
    He, Kevin
    Li, Yanming
    Li, Yi
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 175
  • [8] Variational Inference for Gaussian Process Models with Linear Complexity
    Cheng, Ching-An
    Boots, Byron
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [9] APPROXIMATE CONDITIONAL INFERENCE IN GENERALIZED LINEAR-MODELS
    DAVISON, AC
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1988, 50 (03): : 445 - 461
  • [10] Bayesian inference for generalized linear mixed models
    Fong, Youyi
    Rue, Havard
    Wakefield, Jon
    [J]. BIOSTATISTICS, 2010, 11 (03) : 397 - 412