Improved Caffarelli-Kohn-Nirenberg Inequalities and Uncertainty Principle

被引:1
|
作者
Dang, Pei [1 ]
Mai, Weixiong [2 ]
机构
[1] Macau Univ Sci & Technol, Fac Innovat Engn, Dept Engn Sci, Macau, Peoples R China
[2] Macau Univ Sci & Technol, Macao Ctr Math Sci, Macau, Peoples R China
关键词
Uncertainty principles; Caffarelli-Kohn-Nirenberg inequalities; Phase derivative; Covariance; RELLICH; SIGNALS; HARDY; MANIFOLDS; SOBOLEV;
D O I
10.1007/s12220-023-01524-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove some improved Caffarelli-Kohn-Nirenberg inequalities and uncertainty principle for complex- and vector-valued functions on R-n, which is a further study of the results in Dang et al. (J Funct Anal 265:2239-2266, 2013). In particular, we introduce an analogue of "phase derivative" for vector-valued functions. Moreover, using the introduced "phase derivative", we extend the extra-strong uncertainty principle to cases for complex- and vector-valued functions defined on S-n, n >= 2.
引用
下载
收藏
页数:26
相关论文
共 50 条
  • [1] Improved Caffarelli–Kohn–Nirenberg Inequalities and Uncertainty Principle
    Pei Dang
    Weixiong Mai
    The Journal of Geometric Analysis, 2024, 34
  • [2] Some improved Caffarelli-Kohn-Nirenberg inequalities
    Abdellaoui, B
    Colorado, E
    Peral, I
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (03) : 327 - 345
  • [3] Some improved Caffarelli-Kohn-Nirenberg inequalities
    B. Abdellaoui
    E. Colorado
    I. Peral
    Calculus of Variations and Partial Differential Equations, 2005, 23 : 327 - 345
  • [4] On the Caffarelli-Kohn-Nirenberg inequalities
    Catrina, F
    Wang, ZQ
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (06): : 437 - 442
  • [5] On Hardy and Caffarelli-Kohn-Nirenberg inequalities
    Hoai-Minh Nguyen
    Marco Squassina
    Journal d'Analyse Mathématique, 2019, 139 : 773 - 797
  • [6] On Hardy and Caffarelli-Kohn-Nirenberg inequalities
    Hoai-Minh Nguyen
    Squassina, Marco
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (02): : 773 - 797
  • [7] Fractional Caffarelli-Kohn-Nirenberg inequalities
    Hoai-Minh Nguyen
    Squassina, Marco
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (09) : 2661 - 2672
  • [8] IMPROVED CAFFARELLI-KOHN-NIRENBERG AND TRACE INEQUALITIES FOR RADIAL FUNCTIONS
    De Napoli, Pablo L.
    Drelichman, Irene
    Duran, Ricardo G.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (05) : 1629 - 1642
  • [9] The Caffarelli-Kohn-Nirenberg inequalities for radial functions
    Mallick, Arka
    Hoai-Minh Nguyen
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 1175 - 1189
  • [10] Caffarelli-Kohn-Nirenberg inequalities with remainder terms
    Wang, ZQ
    Willem, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (02) : 550 - 568