Some improved Caffarelli-Kohn-Nirenberg inequalities

被引:67
|
作者
Abdellaoui, B [1 ]
Colorado, E [1 ]
Peral, I [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
D O I
10.1007/s00526-004-0303-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For 1 < p < N and -infinity < gamma < N-p/p we obtain the following improved Hardy-Sobolev Inequalities integral(Omega)vertical bar del phi vertical bar(p)vertical bar x vertical bar(-p gamma)dx - (N - p(gamma + 1)/p)(P) integral(Omega) vertical bar phi vertical bar(p) /vertical bar x vertical bar(p(gamma+1)) dx >= C(p, q, r, gamma, vertical bar Omega vertical bar) (integral(Omega) vertical bar del phi vertical bar(q) vertical bar x vertical bar(-r gamma)dx) (p/q), where 1 < q < p and q <= r < infinity if gamma <= 0.1 <= r < p + p(N, p, q, gamma) if gamma > 0, for some positive constant p(N, p, q, gamma). Also we give an alternative proof of the optimal improved inequality for p = 2 by Wang-Willem in [16].
引用
收藏
页码:327 / 345
页数:19
相关论文
共 50 条
  • [1] Some improved Caffarelli-Kohn-Nirenberg inequalities
    B. Abdellaoui
    E. Colorado
    I. Peral
    [J]. Calculus of Variations and Partial Differential Equations, 2005, 23 : 327 - 345
  • [2] On the Caffarelli-Kohn-Nirenberg inequalities
    Catrina, F
    Wang, ZQ
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (06): : 437 - 442
  • [3] Improved Caffarelli-Kohn-Nirenberg Inequalities and Uncertainty Principle
    Dang, Pei
    Mai, Weixiong
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (03)
  • [4] SOME IMPROVEMENTS FOR A CLASS OF THE CAFFARELLI-KOHN-NIRENBERG INEQUALITIES
    Sano, Megumi
    Takahashi, Futoshi
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2018, 31 (1-2) : 57 - 74
  • [5] On Hardy and Caffarelli-Kohn-Nirenberg inequalities
    Hoai-Minh Nguyen
    Squassina, Marco
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (02): : 773 - 797
  • [6] On Hardy and Caffarelli-Kohn-Nirenberg inequalities
    Hoai-Minh Nguyen
    Marco Squassina
    [J]. Journal d'Analyse Mathématique, 2019, 139 : 773 - 797
  • [7] Fractional Caffarelli-Kohn-Nirenberg inequalities
    Hoai-Minh Nguyen
    Squassina, Marco
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (09) : 2661 - 2672
  • [8] Some Improved Caffarelli-Kohn-Nirenberg Inequalities with General Weights and Optimal Remainders
    Shen, Yaotian
    Chen, Zhihui
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2010, 6 (04) : 1123 - 1143
  • [9] IMPROVED CAFFARELLI-KOHN-NIRENBERG AND TRACE INEQUALITIES FOR RADIAL FUNCTIONS
    De Napoli, Pablo L.
    Drelichman, Irene
    Duran, Ricardo G.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (05) : 1629 - 1642
  • [10] The Caffarelli-Kohn-Nirenberg inequalities for radial functions
    Mallick, Arka
    Hoai-Minh Nguyen
    [J]. COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 1175 - 1189