Improved Caffarelli-Kohn-Nirenberg Inequalities and Uncertainty Principle

被引:1
|
作者
Dang, Pei [1 ]
Mai, Weixiong [2 ]
机构
[1] Macau Univ Sci & Technol, Fac Innovat Engn, Dept Engn Sci, Macau, Peoples R China
[2] Macau Univ Sci & Technol, Macao Ctr Math Sci, Macau, Peoples R China
关键词
Uncertainty principles; Caffarelli-Kohn-Nirenberg inequalities; Phase derivative; Covariance; RELLICH; SIGNALS; HARDY; MANIFOLDS; SOBOLEV;
D O I
10.1007/s12220-023-01524-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove some improved Caffarelli-Kohn-Nirenberg inequalities and uncertainty principle for complex- and vector-valued functions on R-n, which is a further study of the results in Dang et al. (J Funct Anal 265:2239-2266, 2013). In particular, we introduce an analogue of "phase derivative" for vector-valued functions. Moreover, using the introduced "phase derivative", we extend the extra-strong uncertainty principle to cases for complex- and vector-valued functions defined on S-n, n >= 2.
引用
收藏
页数:26
相关论文
共 50 条