In this paper we prove some improved Caffarelli-Kohn-Nirenberg inequalities and uncertainty principle for complex- and vector-valued functions on R-n, which is a further study of the results in Dang et al. (J Funct Anal 265:2239-2266, 2013). In particular, we introduce an analogue of "phase derivative" for vector-valued functions. Moreover, using the introduced "phase derivative", we extend the extra-strong uncertainty principle to cases for complex- and vector-valued functions defined on S-n, n >= 2.
机构:
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z4, Canada
Pacific Inst Math Sci, Vancouver, BC V6T 1Z4, CanadaUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z4, Canada
Lam, Nguyen
Lu, Guozhen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Connecticut, Dept Math, Storrs, CT 06269 USAUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z4, Canada
机构:
Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl, Bucharest 050711, Romania
Univ Politehn Bucuresti, Res Grp Project PN III P1 1 1 TE 2019 0456, Bucharest 060042, RomaniaUniv Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
Cazacu, Cristian
论文数: 引用数:
h-index:
机构:
Flynn, Joshua
Lam, Nguyen
论文数: 0引用数: 0
h-index: 0
机构:
Mem Univ Newfoundland, Sch Sci & Environm, Grenfell Campus, Corner Brook, NF A2H 5G4, CanadaUniv Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania