Improved Caffarelli-Kohn-Nirenberg Inequalities and Uncertainty Principle

被引:1
|
作者
Dang, Pei [1 ]
Mai, Weixiong [2 ]
机构
[1] Macau Univ Sci & Technol, Fac Innovat Engn, Dept Engn Sci, Macau, Peoples R China
[2] Macau Univ Sci & Technol, Macao Ctr Math Sci, Macau, Peoples R China
关键词
Uncertainty principles; Caffarelli-Kohn-Nirenberg inequalities; Phase derivative; Covariance; RELLICH; SIGNALS; HARDY; MANIFOLDS; SOBOLEV;
D O I
10.1007/s12220-023-01524-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove some improved Caffarelli-Kohn-Nirenberg inequalities and uncertainty principle for complex- and vector-valued functions on R-n, which is a further study of the results in Dang et al. (J Funct Anal 265:2239-2266, 2013). In particular, we introduce an analogue of "phase derivative" for vector-valued functions. Moreover, using the introduced "phase derivative", we extend the extra-strong uncertainty principle to cases for complex- and vector-valued functions defined on S-n, n >= 2.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] On Caffarelli-Kohn-Nirenberg Inequalities for Block-Radial Functions
    Leszek Skrzypczak
    Cyril Tintarev
    Potential Analysis, 2016, 45 : 65 - 81
  • [42] The Caffarelli-Kohn-Nirenberg type inequalities involving critical and supercritical weights
    Horiuchi, Toshio
    Kumlin, Peter
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2012, 88 (01) : 1 - 6
  • [43] The Caffarelli-Kohn-Nirenberg inequalities and manifolds with nonnegative weighted Ricci curvature
    Mao, Jing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 428 (02) : 866 - 881
  • [44] Caffarelli-Kohn-Nirenberg and Sobolev type inequalities on stratified Lie groups
    Ruzhansky, Michael
    Suragan, Durvudkhan
    Yessirkegenov, Nurgissa
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (05):
  • [45] On the stability of the Caffarelli-Kohn-Nirenberg inequality
    Wei, Juncheng
    Wu, Yuanze
    MATHEMATISCHE ANNALEN, 2022, 384 (3-4) : 1509 - 1546
  • [46] Classification of radial solutions to equations related to Caffarelli-Kohn-Nirenberg inequalities
    Villavert, John
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (01) : 299 - 315
  • [47] A simple proof of the refined sharp weighted Caffarelli-Kohn-Nirenberg inequalities
    Kendell, Steven
    Lam, Nguyen
    Smith, Dylan
    White, Austin
    Wiseman, Parker
    AIMS MATHEMATICS, 2023, 8 (11): : 27983 - 27988
  • [48] Embeddings of weighted sobolev spaces and generalized Caffarelli-Kohn-Nirenberg inequalities
    Rabier, Patrick J.
    JOURNAL D ANALYSE MATHEMATIQUE, 2012, 118 : 251 - 296
  • [49] On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities
    Abdellaoui, B
    Peral, I
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2003, 2 (04) : 539 - 566
  • [50] Stein-Weiss and Caffarelli-Kohn-Nirenberg inequalities with angular integrability
    D'Ancona, Piero
    Luca, Renato
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) : 1061 - 1079