共 50 条
Improved Caffarelli-Kohn-Nirenberg Inequalities and Uncertainty Principle
被引:1
|作者:
Dang, Pei
[1
]
Mai, Weixiong
[2
]
机构:
[1] Macau Univ Sci & Technol, Fac Innovat Engn, Dept Engn Sci, Macau, Peoples R China
[2] Macau Univ Sci & Technol, Macao Ctr Math Sci, Macau, Peoples R China
关键词:
Uncertainty principles;
Caffarelli-Kohn-Nirenberg inequalities;
Phase derivative;
Covariance;
RELLICH;
SIGNALS;
HARDY;
MANIFOLDS;
SOBOLEV;
D O I:
10.1007/s12220-023-01524-2
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we prove some improved Caffarelli-Kohn-Nirenberg inequalities and uncertainty principle for complex- and vector-valued functions on R-n, which is a further study of the results in Dang et al. (J Funct Anal 265:2239-2266, 2013). In particular, we introduce an analogue of "phase derivative" for vector-valued functions. Moreover, using the introduced "phase derivative", we extend the extra-strong uncertainty principle to cases for complex- and vector-valued functions defined on S-n, n >= 2.
引用
下载
收藏
页数:26
相关论文