Machine learning for photonics: from computing to communication

被引:0
|
作者
Da Ros, Francesco [1 ]
Cem, Ali [1 ]
Osadchuk, Yevhenii [1 ]
Jovanovic, Ognjen [1 ]
Zibar, Darko [1 ]
机构
[1] Tech Univ Denmark, Lyngby, Denmark
关键词
NN models; matrix multipliers; equalization;
D O I
10.1109/SUM57928.2023.10224400
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Neural networks are effective tools for learning direct and inverse models. Here, we review two specific applications of neural networks to photonics: (i) learning accurate direct models for optical matrix multipliers and (ii) inverse modeling for short-reach fiber communication systems, enabling signal equalization.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Harnessing Approximate Computing for Machine Learning
    Shakibhamedan, Salar
    Aminifar, Amin
    Vassallo, Luke
    TaheriNejad, Nima
    2024 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, ISVLSI, 2024, : 585 - 591
  • [32] Parallel computing and photonics
    Neff, John A., 1600, (23):
  • [33] PARALLEL COMPUTING AND PHOTONICS
    NEFF, JA
    PHOTONICS SPECTRA, 1989, 23 (08) : 135 - &
  • [34] Photonics for Neuromorphic Computing
    Prucnal, Paul R.
    Tait, Alexander N.
    Nahmias, Mitchell A.
    de Lima, Thomas Ferreira
    Peng, Hsuan-Tung
    Shastri, Bhavin J.
    2018 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2018,
  • [35] Computing interface curvature from volume fractions: A machine learning approach
    Patel, H., V
    Panda, A.
    Kuipers, J. A. M.
    Peters, E. A. J. F.
    COMPUTERS & FLUIDS, 2019, 193
  • [36] AHaH Computing-From Metastable Switches to Attractors to Machine Learning
    Nugent, Michael Alexander
    Molter, Timothy Wesley
    PLOS ONE, 2014, 9 (02):
  • [37] Introduction to JS']JSTQE Issue on Photonics for Deep Learning and Neural Computing
    Prucnal, Paul R.
    Shastri, Bhavin J.
    Fischer, Ingo
    Brunner, Daniel
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (01)
  • [38] In-Memory Computing for Machine Learning and Deep Learning
    Lepri, N.
    Glukhov, A.
    Cattaneo, L.
    Farronato, M.
    Mannocci, P.
    Ielmini, D.
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2023, 11 : 587 - 601
  • [39] Patent Portfolio Analysis of the Synergy between Machine Learning and Photonics
    Chang, Shu-Hao
    PHOTONICS, 2022, 9 (01)
  • [40] Metasurfaces, Metadevices, and Metasystems: Hierarchical Photonics via Machine Learning
    Cai, Wenshan
    2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,