Machine learning for photonics: from computing to communication

被引:0
|
作者
Da Ros, Francesco [1 ]
Cem, Ali [1 ]
Osadchuk, Yevhenii [1 ]
Jovanovic, Ognjen [1 ]
Zibar, Darko [1 ]
机构
[1] Tech Univ Denmark, Lyngby, Denmark
关键词
NN models; matrix multipliers; equalization;
D O I
10.1109/SUM57928.2023.10224400
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Neural networks are effective tools for learning direct and inverse models. Here, we review two specific applications of neural networks to photonics: (i) learning accurate direct models for optical matrix multipliers and (ii) inverse modeling for short-reach fiber communication systems, enabling signal equalization.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] NEUROPHOTONICS Photonics demonstrate brainlike behavior useful in machine learning
    Bains, Sunny
    LASER FOCUS WORLD, 2017, 53 (07): : 11 - 12
  • [42] Why Data Science and Machine Learning Need Silicon Photonics
    Klenk, Benjamin
    Dennison, Larry
    2020 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2020,
  • [43] Machine learning pattern recognition in integrated silicon photonics design
    Xu, Dan-Xia
    Melati, Daniele
    Dezfouli, Mohsen Kamandar
    Schmid, Jens H.
    Cheben, Pavel
    Cheriton, Ross
    Janz, Siegfried
    Grinberg, Yuri
    Niegemann, Jens
    Pond, James
    Reid, Adam
    2020 PHOTONICS NORTH (PN), 2020,
  • [44] A novel randomized machine learning approach: Reservoir computing extreme learning machine
    Ertugrul, Omer Faruk
    APPLIED SOFT COMPUTING, 2020, 94
  • [45] The architecture of communication channel for custom computing machine node
    Kapela, R.
    Nowakowski, B.
    Rybarczyk, A.
    MIXDES 2007: Proceedings of the 14th International Conference on Mixed Design of Integrated Circuits and Systems:, 2007, : 679 - 683
  • [46] Machine Learning Based Power Efficient Optimized Communication Ensemble Model with Intelligent Fog Computing for WSNs
    Abhishek Jain
    Amit Kumar Bhardwaj
    Wireless Personal Communications, 2023, 131 : 415 - 429
  • [47] Machine learning and quantum computing for 5G/6G communication networks - A survey
    M S.
    International Journal of Intelligent Networks, 2022, 3 : 197 - 203
  • [48] Machine Learning Based Power Efficient Optimized Communication Ensemble Model with Intelligent Fog Computing for WSNs
    Jain, Abhishek
    Bhardwaj, Amit Kumar
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 131 (01) : 415 - 429
  • [49] Machine Learning Techniques in Optical Communication
    Zibar, Darko
    Piels, Molly
    Jones, Rasmus
    Schaeeffer, Christian G.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (06) : 1442 - 1452
  • [50] Machine Learning for Wireless Communication: An Overview
    Cao, Zijian
    Zhang, Hua
    Liang, Le
    Li, Geoffrey Ye
    APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2022, 11 (01)