Machine learning for photonics: from computing to communication

被引:0
|
作者
Da Ros, Francesco [1 ]
Cem, Ali [1 ]
Osadchuk, Yevhenii [1 ]
Jovanovic, Ognjen [1 ]
Zibar, Darko [1 ]
机构
[1] Tech Univ Denmark, Lyngby, Denmark
关键词
NN models; matrix multipliers; equalization;
D O I
10.1109/SUM57928.2023.10224400
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Neural networks are effective tools for learning direct and inverse models. Here, we review two specific applications of neural networks to photonics: (i) learning accurate direct models for optical matrix multipliers and (ii) inverse modeling for short-reach fiber communication systems, enabling signal equalization.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Computing with Categories in Machine Learning
    Sennesh, Eli
    Xu, Tom
    Maruyama, Yoshihiro
    ARTIFICIAL GENERAL INTELLIGENCE, AGI 2023, 2023, 13921 : 244 - 254
  • [22] Machine Learning as Granular Computing
    Hu, Hong
    Shi, Zhongzhi
    2009 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING ( GRC 2009), 2009, : 229 - 234
  • [23] Granular computing in machine learning
    Degang Chen
    Weihua Xu
    Jinhai Li
    Granular Computing, 2019, 4 : 299 - 300
  • [24] Granular computing in machine learning
    Chen, Degang
    Xu, Weihua
    Li, Jinhai
    GRANULAR COMPUTING, 2019, 4 (03) : 299 - 300
  • [25] Integrated Phase-change Photonics: A Strategy for Merging Communication and Computing
    Wright, C. David
    Bhaskaran, Harish
    Pernice, Wolfram. H. P.
    Carrillo, Santiago G-C
    Gemo, Emanuele
    Baldycheva, Anna
    Cheng, Zengguang
    Li, Xuan
    Rios, Carlos
    Youngblood, Nathan
    Feldmann, Johannes
    Gruhler, Nico
    Stegmaier, Matthias
    2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2019,
  • [26] Future prospects of silicon photonics in next generation communication and computing systems
    Yoo, S. J. B.
    ELECTRONICS LETTERS, 2009, 45 (12) : 584 - 587
  • [27] Machine learning to optimize additive manufacturing for visible photonics
    Lininger, Andrew
    Aththanayake, Akeshi
    Boyd, Jonathan
    Ali, Omar
    Goel, Madhav
    Jizhe, Yangheng
    Hinczewski, Michael
    Strangi, Giuseppe
    NANOPHOTONICS, 2023, 12 (14) : 2767 - 2778
  • [28] Advances in machine learning optimization for classical and quantum photonics
    Sanchez, M.
    Everly, C.
    Postigo, P. A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2024, 41 (02) : A177 - A190
  • [29] Machine Learning Application For Silicon Photonics Transceiver Testing
    Kim, Woosung
    Seng, Yeoh Hoe
    Chang, Yi-Shing
    Mei, Suohai
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XII, 2018, 10751
  • [30] MACHINE LEARNING IN COMMUNICATION NETS
    LEHMANN, F
    SEISING, R
    WALTHERKLAUS, E
    LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1992, 604 : 304 - 313