Finite skew braces of square-free order and supersolubility

被引:2
|
作者
Ballester-Bolinches, A. [1 ]
Esteban-Romero, R. [1 ]
Ferrara, M. [2 ]
Perez-Calabuig, V. [1 ]
Trombetti, M. [3 ]
机构
[1] Univ Valencia, Dept Matemat, Dr Moliner 50, Burjassot 46100, Valencia, Spain
[2] Univ Campania Luigi Vanvitelli, Dipartimento Matemat & Fis, Viale Lincoln 5, I-81100 Caserta, Italy
[3] Univ Napoli Federico II, Complesso Univ Monte S Angelo, Dipartimento Matemat & Applicazioni Renato Cacciop, Via Cintia, I-80126 Naples, Italy
关键词
16T25; 03D40; 20F10; 20F16; YANG-BAXTER EQUATION; SET-THEORETIC SOLUTIONS;
D O I
10.1017/fms.2024.29
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study supersoluble skew braces, a class of skew braces that encompasses all finite skew braces of square-free order. It turns out that finite supersoluble skew braces have Sylow towers and that in an arbitrary supersoluble skew brace B many relevant skew brace-theoretical properties are easier to identify: For example, a centrally nilpotent ideal of B is B-centrally nilpotent, a fact that simplifies the computational search for the Fitting ideal; also, B has finite multipermutational level if and only if $(B,+)$ is nilpotent.Given a finite presentation of the structure skew brace $G(X,r)$ associated with a finite nondegenerate solution of the Yang-Baxter equation (YBE), there is an algorithm that decides if $G(X,r)$ is supersoluble or not. Moreover, supersoluble skew braces are examples of almost polycyclic skew braces, so they give rise to solutions of the YBE on which one can algorithmically work on.
引用
收藏
页数:33
相关论文
共 50 条