Square-free Grobner degenerations

被引:37
|
作者
Conca, Aldo [1 ]
Varbaro, Matteo [1 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Genoa, Italy
关键词
SINGULARITIES; GRAPHS;
D O I
10.1007/s00222-020-00958-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I be a homogeneous ideal of S = K[x(1), ..., x(n)] and let J be an initial ideal of I with respect to a term order. We prove that if J is radical then the Hilbert functions of the local cohomology modules supported at the homogeneous maximal ideal of S/I and S/J coincide. In particular, depth(S/I) = depth(S/J) and reg(S/I) = reg(S/J).
引用
收藏
页码:713 / 730
页数:18
相关论文
共 50 条
  • [1] Square-free Gröbner degenerations
    Aldo Conca
    Matteo Varbaro
    [J]. Inventiones mathematicae, 2020, 221 : 713 - 730
  • [2] COMPONENTWISE LINEARITY UNDER SQUARE-FREE GRÖBNER DEGENERATIONS
    Yu, Hongmiao
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2024, 16 (03) : 369 - 377
  • [3] Square-free words with square-free self-shuffles
    Currie, James D.
    Saari, Kalle
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [4] Consecutive square-free numbers and square-free primitive roots
    Jing, Mengyao
    Liu, Huaning
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (01) : 205 - 226
  • [5] On the square-free sieve
    Helfgott, HA
    [J]. ACTA ARITHMETICA, 2004, 115 (04) : 349 - 402
  • [6] ON SQUARE-FREE DIVISORS
    CIOIA, AA
    VAIDYA, AM
    [J]. TEXAS JOURNAL OF SCIENCE, 1964, 16 (04): : 454 - &
  • [7] Square-free rings
    D'Ambrosia, BK
    [J]. COMMUNICATIONS IN ALGEBRA, 1999, 27 (05) : 2045 - 2071
  • [8] On Square-Free Numbers
    Grabowski, Adam
    [J]. FORMALIZED MATHEMATICS, 2013, 21 (02): : 153 - 162
  • [9] SQUARE-FREE INTEGERS
    CHOWLA, S
    SMITH, RA
    VAIDYA, AM
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (06): : 686 - &
  • [10] ON SQUARE-FREE DIVISORS
    GIOIA, AA
    VAIDYA, AM
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (04): : 454 - &