Finite skew braces of square-free order and supersolubility

被引:2
|
作者
Ballester-Bolinches, A. [1 ]
Esteban-Romero, R. [1 ]
Ferrara, M. [2 ]
Perez-Calabuig, V. [1 ]
Trombetti, M. [3 ]
机构
[1] Univ Valencia, Dept Matemat, Dr Moliner 50, Burjassot 46100, Valencia, Spain
[2] Univ Campania Luigi Vanvitelli, Dipartimento Matemat & Fis, Viale Lincoln 5, I-81100 Caserta, Italy
[3] Univ Napoli Federico II, Complesso Univ Monte S Angelo, Dipartimento Matemat & Applicazioni Renato Cacciop, Via Cintia, I-80126 Naples, Italy
关键词
16T25; 03D40; 20F10; 20F16; YANG-BAXTER EQUATION; SET-THEORETIC SOLUTIONS;
D O I
10.1017/fms.2024.29
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study supersoluble skew braces, a class of skew braces that encompasses all finite skew braces of square-free order. It turns out that finite supersoluble skew braces have Sylow towers and that in an arbitrary supersoluble skew brace B many relevant skew brace-theoretical properties are easier to identify: For example, a centrally nilpotent ideal of B is B-centrally nilpotent, a fact that simplifies the computational search for the Fitting ideal; also, B has finite multipermutational level if and only if $(B,+)$ is nilpotent.Given a finite presentation of the structure skew brace $G(X,r)$ associated with a finite nondegenerate solution of the Yang-Baxter equation (YBE), there is an algorithm that decides if $G(X,r)$ is supersoluble or not. Moreover, supersoluble skew braces are examples of almost polycyclic skew braces, so they give rise to solutions of the YBE on which one can algorithmically work on.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Arc-Transitive Pentavalent Graphs of Square-Free Order
    Ding, Suyun
    Ling, Bo
    Lou, Bengong
    Pan, Jiangmin
    GRAPHS AND COMBINATORICS, 2016, 32 (06) : 2355 - 2366
  • [32] Pentavalent One-regular Graphs of Square-free Order
    Li, Yantao
    Feng, Yan-Quan
    ALGEBRA COLLOQUIUM, 2010, 17 (03) : 515 - 524
  • [33] Square-Free Non-Cayley Numbers. On Vertex-Transitive Non-Cayley Graphs of Square-Free Order
    Ákos Seress
    Designs, Codes and Cryptography, 2005, 34 : 265 - 281
  • [34] Some results in square-free and strong square-free edge-colorings of graphs
    Sudeep, K. S.
    Vishwanathan, Sundar
    DISCRETE MATHEMATICS, 2007, 307 (14) : 1818 - 1824
  • [35] ON THE PRODUCT OF SQUARE-FREE WORDS
    DELUCA, A
    DISCRETE MATHEMATICS, 1984, 52 (2-3) : 143 - 157
  • [36] Rich square-free words
    Vesti, Jetro
    THEORETICAL COMPUTER SCIENCE, 2017, 687 : 48 - 61
  • [37] Square-free partial words
    Halava, Vesa
    Harju, Tero
    Karki, Tomi
    INFORMATION PROCESSING LETTERS, 2008, 108 (05) : 290 - 292
  • [38] Square-free perfect graphs
    Conforti, M
    Cornuéjols, G
    Vuskovic, K
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 90 (02) : 257 - 307
  • [39] The distance to square-free polynomials
    Dubickas, Arturas
    Sha, Min
    ACTA ARITHMETICA, 2018, 186 (03) : 243 - 256
  • [40] DISTRIBUTION OF SQUARE-FREE NUMBERS
    HOOLEY, C
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (06): : 1216 - 1223