Finite skew braces of square-free order and supersolubility

被引:2
|
作者
Ballester-Bolinches, A. [1 ]
Esteban-Romero, R. [1 ]
Ferrara, M. [2 ]
Perez-Calabuig, V. [1 ]
Trombetti, M. [3 ]
机构
[1] Univ Valencia, Dept Matemat, Dr Moliner 50, Burjassot 46100, Valencia, Spain
[2] Univ Campania Luigi Vanvitelli, Dipartimento Matemat & Fis, Viale Lincoln 5, I-81100 Caserta, Italy
[3] Univ Napoli Federico II, Complesso Univ Monte S Angelo, Dipartimento Matemat & Applicazioni Renato Cacciop, Via Cintia, I-80126 Naples, Italy
关键词
16T25; 03D40; 20F10; 20F16; YANG-BAXTER EQUATION; SET-THEORETIC SOLUTIONS;
D O I
10.1017/fms.2024.29
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study supersoluble skew braces, a class of skew braces that encompasses all finite skew braces of square-free order. It turns out that finite supersoluble skew braces have Sylow towers and that in an arbitrary supersoluble skew brace B many relevant skew brace-theoretical properties are easier to identify: For example, a centrally nilpotent ideal of B is B-centrally nilpotent, a fact that simplifies the computational search for the Fitting ideal; also, B has finite multipermutational level if and only if $(B,+)$ is nilpotent.Given a finite presentation of the structure skew brace $G(X,r)$ associated with a finite nondegenerate solution of the Yang-Baxter equation (YBE), there is an algorithm that decides if $G(X,r)$ is supersoluble or not. Moreover, supersoluble skew braces are examples of almost polycyclic skew braces, so they give rise to solutions of the YBE on which one can algorithmically work on.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] SQUARE-FREE INTEGERS
    CHOWLA, S
    SMITH, RA
    VAIDYA, AM
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (06): : 686 - &
  • [22] ON SQUARE-FREE DIVISORS
    GIOIA, AA
    VAIDYA, AM
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (04): : 454 - &
  • [23] Classifying arc-transitive circulants of square-free order
    Li, CH
    Marusic, D
    Morris, J
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 14 (02) : 145 - 151
  • [24] On square-free factorization of multivariate polynomials over a finite field
    Bernardin, L
    THEORETICAL COMPUTER SCIENCE, 1997, 187 (1-2) : 105 - 116
  • [25] Arc-Transitive Pentavalent Graphs of Square-Free Order
    Suyun Ding
    Bo Ling
    Bengong Lou
    Jiangmin Pan
    Graphs and Combinatorics, 2016, 32 : 2355 - 2366
  • [26] On prime-valent symmetric graphs of square-free order
    Pan, Jiangmin
    Ling, Bo
    Ding, Suyun
    ARS MATHEMATICA CONTEMPORANEA, 2018, 15 (01) : 53 - 65
  • [27] On edge-transitive cubic graphs of square-free order
    Liu, Gui Xian
    Lu, Zai Ping
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 45 : 41 - 46
  • [28] Vertex-Transitive Cubic Graphs of Square-Free Order
    Li, Cai Heng
    Lu, Zai Ping
    Wang, Gai Xia
    JOURNAL OF GRAPH THEORY, 2014, 75 (01) : 1 - 19
  • [29] Classifying arc-transitive circulants of square-free order
    1600, Kluwer Academic Publishers (14):
  • [30] Classifying Arc-Transitive Circulants of Square-Free Order
    Caiheng Li
    Dragan Marušič
    Joy Morris
    Journal of Algebraic Combinatorics, 2001, 14 : 145 - 151