Image classification of sugarcane aphid density using deep convolutional neural networks

被引:11
|
作者
Grijalva, Ivan [1 ]
Spiesman, Brian J. [1 ]
Mccornack, Brian [1 ]
机构
[1] Kansas State Univ, Dept Entomol, Manhattan, KS 66506 USA
来源
关键词
Sorghum; Integrated pest management; Sugarcane aphid; Automation; Classification;
D O I
10.1016/j.atech.2022.100089
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Sugarcane aphid, Melanaphis sacchari (Zehntner), has caused significant yield loss across the sorghum (Sorghum bicolor L. Moench) production region in the U.S. Adequate management of sugarcane aphid depends on pest monitoring and economic threshold levels to spray insecticides. However, scouting this pest under field conditions is time-consuming and inefficient. To assist pest monitoring, we propose the use of deep learning models to automatically classify sugarcane aphid infestation on leaves according to different density levels in images. We used a total of 5,048 images collected during field scouting events and evaluated the performance of four deep learning classification models: Inception v3, DenseNet 121, Resnet 50, and Xception. We trained the models to classify aphid densities into 6 classes based on established standard threshold levels for spraying: no aphids present (0 sugarcane aphids/leaf), no threat or below an action/treatment threshold (1-10, and 11-39 sugarcane aphids/leaf), and infested above an economic threshold where an insecticide should be applied (40-125, 126-500, and > 500 sugarcane aphids/leaf) to manage sugarcane aphid in field conditions. Among these models, Inception v3 and Xception performed best with an overall accuracy score of 86% and a lower number of misclassified images. Importantly, the models correctly classified aphids as above or below threshold spray density over 97% of the time. The methodology developed and the models tested in this study can be used in sampling protocols and further mobile applications or remote sensing technologies. These technologies can assist sorghum growers and researchers to scout and screen sugarcane aphid in susceptible and resistant sorghum varieties automatically and provide accurate recommendations on whether or not to apply pesticides.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] String representations and distances in deep Convolutional Neural Networks for image classification
    Barat, Cecile
    Ducottet, Christophe
    [J]. PATTERN RECOGNITION, 2016, 54 : 104 - 115
  • [32] A Comprehensive Study in Ensembling Deep Convolutional Neural Networks for Image Classification
    Uddamvathanak, Rom
    Yang, Feng
    [J]. TENTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING SYSTEMS, 2019, 2019, 11071
  • [33] Deep convolutional neural networks for diabetic retinopathy detection by image classification
    Wan, Shaohua
    Liang, Yan
    Zhang, Yin
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2018, 72 : 274 - 282
  • [34] Mammogram density classification using deep convolutional neural network
    Nithya, R.
    Santhi, B.
    [J]. JOURNAL OF INSTRUMENTATION, 2021, 16 (01):
  • [35] Gender and Smile Classification using Deep Convolutional Neural Networks
    Zhang, Kaipeng
    Tan, Lianzhi
    Li, Zhifeng
    Qiao, Yu
    [J]. PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 739 - 743
  • [36] Classification of crystallization outcomes using deep convolutional neural networks
    Bruno, Andrew E.
    Charbonneau, Patrick
    Newman, Janet
    Snell, Edward H.
    So, David R.
    Vanhoucke, Vincent
    Watkins, Christopher J.
    Williams, Shawn
    Wilson, Julie
    [J]. PLOS ONE, 2018, 13 (06):
  • [37] Hyperspectral Data Classification using Deep Convolutional Neural Networks
    Salman, Mesut
    Yuksel, Seniha Esen
    [J]. 2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 2129 - 2132
  • [38] Melanoma Cancer Classification using Deep Convolutional Neural Networks
    Cadena, Jose M.
    Perez, Noel
    Benitez, Diego
    Grijalva, Felipe
    Flores, Ricardo
    Camacho, Oscar
    Marrero-Ponce, Yovani
    [J]. 2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [39] Water stress classification using Convolutional Deep Neural Networks
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2022, 28 (03) : 311 - 328
  • [40] CLASSIFICATION OF DERMOSCOPY PATTERNS USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Demyanov, Sergey
    Chakravorty, Rajib
    Abedini, Mani
    Halpern, Alan
    Garnavi, Rahil
    [J]. 2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 364 - 368