Deep convolutional neural networks for diabetic retinopathy detection by image classification

被引:231
|
作者
Wan, Shaohua [1 ]
Liang, Yan [1 ]
Zhang, Yin [1 ,2 ]
机构
[1] Zhongnan Univ Econ & Law, Sch Informat & Safety Engn, Wuhan 430073, Hubei, Peoples R China
[2] Hubei Key Lab Med Informat Anal & Tumor Diag & Tr, Wuhan 430074, Hubei, Peoples R China
关键词
Diabetic retinopathy; Fundus images classification; Convolutional neural networks; Transfer learning;
D O I
10.1016/j.compeleceng.2018.07.042
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetic retinopathy (DR) is a common complication of diabetes and one of the major causes of blindness in the active population. Many of the complications of DR can be prevented by blood glucose control and timely treatment. Since the varieties and the complexities of DR, it is really difficult for DR detection in the time-consuming manual diagnosis. This paper is to attempt towards finding an automatic way to classify a given set of fundus images. We bring convolutional neural networks (CNNs) power to DR detection, which includes 3 major difficult challenges: classification, segmentation and detection. Coupled with transfer learning and hyper-parameter tuning, we adopt AlexNet, VggNet, GoogleNet, ResNet, and analyze how well these models do with the DR image classification. We employ publicly available Kaggle platform for training these models. The best classification accuracy is 95.68% and the results have demonstrated the better accuracy of CNNs and transfer learning on DR image classification. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:274 / 282
页数:9
相关论文
共 50 条
  • [1] Deep Convolutional Neural Networks for Diabetic Retinopathy Classification
    Lian, Chunyan
    Liang, Yixiong
    Kang, Rui
    Xiang, Yao
    [J]. ICAIP 2018: 2018 THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN IMAGE PROCESSING, 2018, : 68 - 72
  • [2] Diabetic retinopathy detection from image to classification using deep convolutional neural network
    Varnousfaderani, Ehsan Shahrian
    Belghith, Akram
    Yousefi, Siamak
    Merkow, Jameson
    Tu Zhuowen
    Bowd, Christopher
    Zangwill, Linda M.
    Goldbaum, Michael Henry
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [3] Diabetic Retinopathy Detection Through Image Analysis Using Deep Convolutional Neural Networks
    De La Torre, Jordi
    Valls, Aida
    Puig, Domenec
    [J]. ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2016, 288 : 58 - 63
  • [4] Diabetic Retinopathy Detection using Deep Convolutional Neural Networks
    Doshi, Darshit
    Shenoy, Aniket
    Sidhpura, Deep
    Gharpure, Prachi
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), 2016, : 261 - 266
  • [5] DIABETIC RETINOPATHY DETECTION BASED ON DEEP CONVOLUTIONAL NEURAL NETWORKS
    Chen, Yi-Wei
    Wu, Tung-Yu
    Wong, Wing-Hung
    Lee, Chen-Yi
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1030 - 1034
  • [6] Automated Detection of Diabetic Retinopathy Using Deep Convolutional Neural Networks
    Xu, Kele
    Zhu, Li
    Wang, Ruixing
    Liu, Chang
    Zhao, Yi
    [J]. MEDICAL PHYSICS, 2016, 43 (06) : 3406 - 3406
  • [7] Diabetic Retinopathy Classification Using CNN and Hybrid Deep Convolutional Neural Networks
    Yasashvini, R.
    Sarobin, Vergin Raja M.
    Panjanathan, Rukmani
    Jasmine, Graceline S.
    Anbarasi, Jani L.
    [J]. SYMMETRY-BASEL, 2022, 14 (09):
  • [8] Multiple Convolutional Neural Networks for Diabetic Retinopathy Classification
    Schweisthal, Brigitte
    Lascu, Mihaela
    [J]. 2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [9] Effective methods of diabetic retinopathy detection based on deep convolutional neural networks
    Gu, Yunchao
    Wang, Xinliang
    Pan, Junjun
    Yong, Zhifan
    Guo, Shihui
    Pan, Tianze
    Jiao, Yonghong
    Zhou, Zhong
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (12) : 2177 - 2187
  • [10] Effective methods of diabetic retinopathy detection based on deep convolutional neural networks
    Yunchao Gu
    Xinliang Wang
    Junjun Pan
    Zhifan Yong
    Shihui Guo
    Tianze Pan
    Yonghong Jiao
    Zhong Zhou
    [J]. International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 2177 - 2187